skip to main content
research-article

Transfusive image manipulation

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

We present a method for consistent automatic transfer of edits applied to one image to many other images of the same object or scene. By introducing novel, content-adaptive weight functions we enhance the non-rigid alignment framework of Lucas-Kanade to robustly handle changes of view point, illumination and non-rigid deformations of the subjects. Our weight functions are content-aware and possess high-order smoothness, enabling to define high-quality image warping with a low number of parameters using spatially-varying weighted combinations of affine deformations. Optimizing the warp parameters leads to subpixel-accurate alignment while maintaining computation efficiency. Our method allows users to perform precise, localized edits such as simultaneous painting on multiple images in real-time, relieving them from tedious and repetitive manual reapplication to each individual image.

References

  1. Agarwala, A., Hertzmann, A., Salesin, D., and Seitz, S. M. 2004. Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph. 23, 3, 584--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. An, X., and Pellacini, F. 2008. AppProp: all-pairs appearance-space edit propagation. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Andersen, E. D., and Andersen, K. D. 2000. The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In High Performance Optimization. Kluwer Academic Publishers, 197--232.Google ScholarGoogle Scholar
  4. Baker, S., and Matthews, I. 2004. Lucas-Kanade 20 years on: A unifying framework. Int. J. Comput. Vision 56, 3, 221--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. 2011. A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92, 1, 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barnes, C., Shechtman, E., Goldman, D. B., and Finkelstein, A. 2010. The generalized patchmatch correspondence algorithm. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Berthouzoz, F., Li, W., Dontcheva, M., and Agrawala, M. 2011. A framework for content-adaptive photo manipulation macros: Application to face, landscape, and global manipulations. ACM Trans. Graph. 30, 5, 120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bhat, P., Zitnick, C. L., Snavely, N., Agarwala, A., Agrawala, M., Curless, B., Cohen, M., and Kang, S. B. 2007. Using photographs to enhance videos of a static scene. In Proc. EGSR, 327--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P. N., and Nayar, S. K. 2008. Face swapping: automatically replacing faces in photographs. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brand, M., and Pletscher, P. 2008. A conditional random field for automatic photo editing. In Proc. CVPR.Google ScholarGoogle Scholar
  11. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., and Xu, Y.-Q. 2006. Color harmonization. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Farbman, Z., Fattal, R., and Lischinski, D. 2010. Diffusion maps for edge-aware image editing. ACM Trans. Graph. 29, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fattal, R., Carroll, R., and Agrawala, M. 2009. Edge-based image coarsening. ACM Trans. Graph. 29, 1, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fattal, R. 2009. Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Finch, M., Snyder, J., and Hoppe, H. 2011. Freeform vector graphics with controlled thin-plate splines. ACM Trans. Graph. 30, 6, 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. HaCohen, Y., Shechtman, E., Goldman, D. B., and Lischinski, D. 2011. Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hasinoff, S. W., Jóźwiak, M., Durand, F., and Freeman, W. T. 2010. Search-and-replace editing for personal photo collections. In Proc. ICCP.Google ScholarGoogle Scholar
  19. Hays, J., and Efros, A. A. 2007. Scene completion using millions of photographs. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jacobson, A., and Sorkine, O. 2012. A cotangent laplacian for images as surfaces. Tech. Rep. 757, ETH Zurich, April.Google ScholarGoogle Scholar
  21. Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. 23, 3, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, Y., Adelson, E. H., and Agarwala, A. 2008. Scribble-boost: Adding classification to edge-aware interpolation of local image and video adjustments. Comput. Graph. Forum 27, 4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, Y., Ju, T., and Hu, S.-M. 2010. Instant propagation of sparse edits on images and videos. Comput. Graph. Forum 29, 7.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Trans. Graph. 25, 3, 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Liu, C., Yuen, J., Torralba, A., Sivic, J., and Freeman, W. T. 2008. Sift flow: Dense correspondence across different scenes. In Proc. ECCV: Part III, 28--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2, 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proc. International Joint Conference on Artificial Intelligence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III. 35--57.Google ScholarGoogle Scholar
  30. Photoshop. 2012. Version 12.0.4. Adobe Systems, Inc.Google ScholarGoogle Scholar
  31. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experiment. Math. 2, 1.Google ScholarGoogle ScholarCross RefCross Ref
  32. Rav-Acha, A., Kohli, P., Rother, C., and Fitzgibbon, A. W. 2008. Unwrap mosaics: a new representation for video editing. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Reinhard, E., Ashikhmin, M., Gooch, B., and Shirley, P. 2001. Color transfer between images. IEEE Comput. Graph. and Applications 21, 5, 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sand, P., and Teller, S. J. 2004. Video matching. ACM Trans. Graph. 23, 3, 592--599. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Scharstein, D., and Szeliski, R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47, 1--3, 7--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zimmer, H., Bruhn, A., and Weickert, J. 2011. Optic flow in harmony. Int. J. Comput. Vision 93, 3, 368--388. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Transfusive image manipulation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 6
            November 2012
            794 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2366145
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 November 2012
            Published in tog Volume 31, Issue 6

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader