skip to main content
10.1145/2380116.2380150acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

JellyLens: content-aware adaptive lenses

Authors Info & Claims
Published:07 October 2012Publication History

ABSTRACT

Focus+context lens-based techniques smoothly integrate two levels of detail using spatial distortion to connect the magnified region and the context. Distortion guarantees visual continuity, but causes problems of interpretation and focus targeting, partly due to the fact that most techniques are based on statically-defined, regular lens shapes, that result in far-from-optimal magnification and distortion. JellyLenses dynamically adapt to the shape of the objects of interest, providing detail-in-context visualizations of higher relevance by optimizing what regions fall into the focus, context and spatially-distorted transition regions. This both improves the visibility of content in the focus region and preserves a larger part of the context region. We describe the approach and its implementation, and report on a controlled experiment that evaluates the usability of JellyLenses compared to regular fisheye lenses, showing clear performance improvements with the new technique for a multi-scale visual search task.

Skip Supplemental Material Section

Supplemental Material

paper_0155-file3.mov

mov

37.8 MB

References

  1. C. Appert, O. Chapuis, and E. Pietriga. High-precision magnification lenses. In Proc. CHI '10, 273--282. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Avidan and A. Shamir. Seam carving for content-aware image resizing. ACM Trans. Graph., 26(3), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. H. Barr. Global and local deformations of solid primitives. In Proc. SIGGRAPH '84, 21--30. ACM, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye web browser with search term popouts: a comparative evaluation with overview and linear view. In Proc. AVI '04, 133--140. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Beier and S. Neely. Feature-based image metamorphosis. In Proc. SIGGRAPH '92, 35--42. ACM, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and magic lenses: the see-through interface. In Proc. SIGGRAPH '93, 73--80. ACM, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Böttger, U. Brandes, O. Deussen, and H. Ziezold. Map warping for the annotation of metro maps. IEEE Comput. Graph. Appl., 28:56--65, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Böttger, M. Preiser, M. Balzer, and O. Deussen. Detail-In-Context visualization for satellite imagery. Computer Graph-ics Forum, 27(2):587--596, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Brosz, S. Carpendale, and M. Nacenta. The undistort lens. Computer Graphics Forum, 30:881--890, June 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Brosz, F. F. Samavati, S. Carpendale, and M. C. Sousa. Single camera flexible projection. In Proc. NPAR '07, 33--42. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. 3-dimensional pliable surfaces: for the effective presentation of visual information. In Proc. UIST '95, 217--226. ACM, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Making distortions comprehensible. In Proc. VL '97, 36--45. IEEE, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. S. T. Carpendale, J. Ligh, and E. Pattison. Achieving higher magnification in context. In Proc. UIST '04, 71--80. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. S. T. Carpendale and C. Montagnese. A framework for unifying presentation space. In Proc. UIST '01, 61--70. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Cockburn, A. Karlson, and B. B. Bederson. A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv., 41:2:1--2:31, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. D. Correa and D. Silver. Programmable shaders for deformation rendering. In Proc. GH '07, 89--96. Eurographics Association, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. W. Furnas. Generalized fisheye views. In ACM SIGCHI Bulletin, volume 17, 16--23. ACM, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Gutwin. Improving focus targeting in interactive fisheye views. In Proc. CHI '02, 267--274. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. C. Gutwin and C. Fedak. A comparison of fisheye lenses for interactive layout tasks. In Proc. GI '04, 213--220, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. E. Hoff, III, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d geometric proximity queries using graphics hardware. In Proc. I3D '01, 145--148. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Hornbæk, B. B. Bederson, and C. Plaisant. Navigation patterns and usability of zoomable user interfaces with and without an overview. ACM Transactions on Computer-Human Interaction, 9(4):362--389, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. A. Keahey and E. L. Robertson. Nonlinear magnification fields. In Proc. INFOVIS '97, 51--58. IEEE, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. Kurzion and R. Yagel. Interactive space deformation with hardware-assisted rendering. IEEE Computer Graphics and Applications, 17(5):66--77, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P.-Y. Laffont, J. Y. Jun, C. Wolf, Y.-W. Tai, K. Idrissi, G. Drettakis, and S.-e. Yoon. Interactive content-aware zooming. In Proc. GI, 79--87. Canadian Info. Proc. Society, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Lamar, B. Hamann, and K. I. Joy. A magnification lens for interactive volume visualization. In Proc. PG '01, 223. IEEE, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In Proc. CHI '95, 401--408. ACM & Addison-Wesley, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented presentation techniques. ACM ToCHI, 1:126--160, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. In Proc. SIGGRAPH '87, 163--169. ACM, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Pietriga, C. Appert, and M. Beaudouin-Lafon. Pointing and beyond: an operationalization and preliminary evaluation of multi-scale searching. In Proc. CHI '07, 1215--1224. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. E. Pietriga, O. Bau, and C. Appert. Representation-independent in-place magnification with sigma lenses. IEEE TVCG, 16(03):455--467, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Rademacher. View-dependent geometry. In Proc. SIGGRAPH '99, 439--446. ACM & Addison-Wesley, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. G. G. Robertson and J. D. Mackinlay. The document lens. In Proc. UIST '93, 101--108. ACM, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Sarkar and M. H. Brown. Graphical fisheye views. CACM, 37(12):73--83, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss. Stretching the rubber sheet: a metaphor for viewing large layouts on small screens. In Proc. UIST '93, 81--91. ACM, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Schein, E. Karpen, and G. Elber. Real-time geometric deformation displacement maps using programmable hardware. The Visual Computer, 21(8):791--800, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  36. T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models. In Proc. SIGGRAPH '86, 151--160. ACM, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Spindler, M. Bubke, T. Germer, and T. Strothotte. Camera textures. In Proc. GRAPHITE '06, 295--302. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. H. Wang, P. J. Mucha, and G. Turk. Water drops on surfaces. ACM Trans. Graph., 24:921--929, July 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y.-S. Wang, T.-Y. Lee, and C.-L. Tai. Focus+context visualization with distortion minimization. IEEE TVCG, 14(6):1731--1738, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. G. Wyvill. Data structure for soft objects. The visual computer, 2(4):227--234, 1986.Google ScholarGoogle Scholar
  41. Y. Yang, J. X. Chen, and M. Beheshti. Nonlinear Perspective Projections and Magic Lenses: 3D View Deformation. IEEE Comput. Graph. Appl., 25(1):76--84, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhao, X., Zeng, W., Gu, D., Kaufman, A., Xu, W., and Mueller, K. Conformal magnifier: A focu+context technique with local shape preservation. IEEE TVCG (2012). PrePrint. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. JellyLens: content-aware adaptive lenses

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '12: Proceedings of the 25th annual ACM symposium on User interface software and technology
      October 2012
      608 pages
      ISBN:9781450315807
      DOI:10.1145/2380116

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 October 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader