skip to main content
10.1145/2396761.2396803acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Interpreting keyword queries over web knowledge bases

Published: 29 October 2012 Publication History

Abstract

Many keyword queries issued to Web search engines target information about real world entities, and interpreting these queries over Web knowledge bases can often enable the search system to provide exact answers to queries. Equally important is the problem of detecting when the reference knowledge base is not capable of answering the keyword query, due to lack of domain coverage.
In this work we present an approach to computing structured representations of keyword queries over a reference knowledge base. We mine frequent query structures from a Web query log and map these structures into a reference knowledge base. Our approach exploits coarse linguistic structure in keyword queries, and combines it with rich structured query representations of information needs.

References

[1]
G. Agarwal, G. Kabra, and K. C. Chang. Towards rich query interpretation: walking back and forth for mining query templates. In Proc. 19th intl. conference on World wide web, pages 1--10. ACM, 2010.
[2]
C. Barr, R. Jones, and M. Regelson. The linguistic structure of english web-search queries. In Proc. Conference on Empirical Methods in Natural Language Processing, EMNLP'08, pages 1021--1030. ACL, 2008.
[3]
R. Blanco, P. Mika, and S. Vigna. Effective and efficient entity search in rdf data. In The Semantic Web -- ISWC 2011, volume 7031 of Lecture Notes in Computer Science, pages 83--97, 2011.
[4]
T. Cheng, X. Yan, and K. C. Chang. EntityRank: searching entities directly and holistically. In VLDB, pages 387--398, 2007.
[5]
R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and S. Vaithyanathan. Understanding queries in a search database system. In Proc. twenty-ninth ACM symposium on Principles of database systems, PODS'10, pages 273--284. ACM, 2010.
[6]
M. Fernandez, V. Lopez, M. Sabou, V. Uren, D. Vallet, E. Motta, and P. Castells. Semantic search meets the web. In Semantic Computing, 2008 IEEE intl. conference on, pages 253 --260, Aug. 2008.
[7]
V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword search over relational databases. In Proc. 29th intl. conference on Very large data bases, pages 850--861. VLDB Endowment, 2003.
[8]
V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational databases. In Proc. 28th intl. conference on Very Large Data Bases, VLDB'02, pages 670--681. VLDB Endowment, 2002.
[9]
A. Hulgeri and C. Nakhe. Keyword searching and browsing in databases using BANKS. In Proc. 18th intl. conference on Data Engineering, ICDE'02. IEEE Computer Society, 2002.
[10]
V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar. Bidirectional expansion for keyword search on graph databases. In Proc. 31st intl. conference on Very large data bases, VLDB'05, pages 505--516, 2005.
[11]
B. Katz, S. Felshin, D. Yuret, A. Ibrahim, J. J. Lin, G. Marton, A. J. McFarland, and B. Temelkuran. Omnibase: Uniform access to heterogeneous data for question answering. In NLDB, pages 230--234, 2002.
[12]
J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. Eighteenth intl. conference on Machine Learning, ICML'01, pages 282--289, 2001.
[13]
Y. Lei, V. S. Uren, and E. Motta. SemSearch: a search engine for the semantic web. In EKAW, pages 238--245, 2006.
[14]
X. Li. Understanding the semantic structure of noun phrase queries. In Proc. 48th Association for Computational Linguistics, ACL'10, pages 1337--1345. ACL, 2010.
[15]
P. Liang, M. I. Jordan, and D. Klein. Learning Dependency-Based compositional semantics. In ACL, pages 590--599, 2011.
[16]
V. Lopez, M. Fernndez, E. Motta, and N. Stieler. PowerAqua: supporting users in querying and exploring the semantic web content. Semantic Web Journal, 2011.
[17]
M. Manshadi and X. Li. Semantic tagging of web search queries. In Proc. Joint Conference of the 47th ACL and the 4th Intl. Joint Conference on Natural Language Processing, pages 861--869. ACL, 2009.
[18]
J. Pound, I. F. Ilyas, and G. Weddell. Expressive and flexible access to web-extracted data: a keyword-based structured query language. In Proc. 2010 intl. conference on Management of data, SIGMOD'10, pages 423--434. ACM, 2010.
[19]
J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object retrieval in the web of data. In Proc. 19th intl. conference on World wide web, WWW'10, pages 771--780. ACM, 2010.
[20]
N. Sarkas, S. Paparizos, and P. Tsaparas. Structured annotations of web queries. In Proc. 2010 intl. conference on Management of data, SIGMOD'10, pages 771--782. ACM, 2010.
[21]
F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proc. 2003 Conference of the North American Association for Computational Linguistics, NAACL'03, pages 134--141, 2003.
[22]
F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledge - unifying WordNet and wikipedia. In 16th Intl. World Wide Web Conference (WWW 2007), pages 697--706, 2007.
[23]
S. Tata and G. M. Lohman. SQAK: doing more with keywords. In Proc. 2008 ACM SIGMOD intl. conference on Management of data, SIGMOD'08, pages 889--902. ACM, 2008.
[24]
T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In Data Engineering, 2009. ICDE'09. IEEE 25th intl. conference on, pages 405--416, 2009.
[25]
Yahoo! Academic Relations. http://webscope.sandbox.yahoo.com/catalog.php - L13 - Yahoo! Search Query Tiny Sample.
[26]
Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu. SPARK: adapting keyword query to semantic search. In The Semantic Web, volume 4825 of Lecture Notes in Computer Science, pages 694--707. Springer Berlin / Heidelberg, 2007. 10.1007/978--3--540--76298-0\_50.

Cited By

View all
  • (2022)Reliable Keyword Query Interpretation on Summary GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2022.3144001(1-1)Online publication date: 2022
  • (2021)Efficient Computation of Semantically Cohesive Subgraphs for Keyword-Based Knowledge Graph ExplorationProceedings of the Web Conference 202110.1145/3442381.3449900(1410-1421)Online publication date: 19-Apr-2021
  • (2020)EntityLDA: A Topic Model for Entity Retrieval on Knowledge Graph2020 IEEE International Conference on Knowledge Graph (ICKG)10.1109/ICBK50248.2020.00062(388-395)Online publication date: Aug-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '12: Proceedings of the 21st ACM international conference on Information and knowledge management
October 2012
2840 pages
ISBN:9781450311564
DOI:10.1145/2396761
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 October 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. knowledge bases
  2. query interpretation
  3. query understanding
  4. semantic query understanding

Qualifiers

  • Research-article

Conference

CIKM'12
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Reliable Keyword Query Interpretation on Summary GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2022.3144001(1-1)Online publication date: 2022
  • (2021)Efficient Computation of Semantically Cohesive Subgraphs for Keyword-Based Knowledge Graph ExplorationProceedings of the Web Conference 202110.1145/3442381.3449900(1410-1421)Online publication date: 19-Apr-2021
  • (2020)EntityLDA: A Topic Model for Entity Retrieval on Knowledge Graph2020 IEEE International Conference on Knowledge Graph (ICKG)10.1109/ICBK50248.2020.00062(388-395)Online publication date: Aug-2020
  • (2020)Search Text to Retrieve Graphs: A Scalable RDF Keyword-Based Search SystemIEEE Access10.1109/ACCESS.2020.29668238(14089-14111)Online publication date: 2020
  • (2020)Survey of RDF Keyword Query TechniquesJournal of Physics: Conference Series10.1088/1742-6596/1550/3/0321081550(032108)Online publication date: 16-Jun-2020
  • (2020)Scalable aggregate keyword query over knowledge graphFuture Generation Computer Systems10.1016/j.future.2020.02.011Online publication date: Feb-2020
  • (2020)An Interactive System for Knowledge Graph SearchDatabase Systems for Advanced Applications10.1007/978-3-030-59419-0_52(760-765)Online publication date: 22-Sep-2020
  • (2020)Hybrid Reasoning Over Large Knowledge Bases Using On-The-Fly Knowledge ExtractionThe Semantic Web10.1007/978-3-030-49461-2_5(69-85)Online publication date: 27-May-2020
  • (2019)Visual Query Answering by Entity-Attribute Graph Matching and Reasoning2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR.2019.00855(8349-8358)Online publication date: Jun-2019
  • (2019)Exposing Knowledge: Providing a Real-Time View of the Domain Under Study for StudentsArtificial Intelligence XXXVI10.1007/978-3-030-34885-4_9(122-135)Online publication date: 19-Nov-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media