skip to main content
keynote

The principles and practice of probabilistic programming

Published: 23 January 2013 Publication History
First page of PDF

Supplementary Material

JPG File (r1d3_talk2.jpg)
MP4 File (r1d3_talk2.mp4)

References

[1]
N. Ackerman, C. Freer, and D. Roy. Noncomputable conditional distributions. In Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on, pages 107--116. IEEE, 2011.
[2]
M. Frank and N. Goodman. Predicting pragmatic reasoning in language games. Science, 336 (6084): 998--998, 2012.
[3]
C. E. Freer and D. M. Roy. Computable de Finetti measures. Annals of Pure and Applied Logic, 163 (5): 530--546, 2012. 10.1016/j.apal.2011.06.011.% URL% http://www.sciencedirect.com/science/article/pii/S0168007211000868.
[4]
T. Gerstenberg and N. D. Goodman. Ping pong in Church: Productive use of concepts in human probabilistic inference. In Proceedings of the 34th annual conference of the cognitive science society, 2012.
[5]
N. Goodman and A. Stuhlmüller. Knowledge and implicature: Modeling language understanding as social cognition. Topics in Cognitive Science, 2013.
[6]
N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum. Church: A language for generative models. In phIn UAI, 2008.
[7]
C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Logic in Computer Science (LICS), 1989 4th Annual IEEE Symposium on, pages 186--195, Jun 1989. 10.1109/LICS.1989.39173.
[8]
A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha. On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming, 11 (2--3): 235--262, 2011.
[9]
O. Kiselyov and C. Shan. Embedded probabilistic programming. In Domain-Specific Languages, pages 360--384, 2009.
[10]
D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[11]
A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic programming via imperatively defined factor graphs. In Neural Information Processing Systems Conference (NIPS), 2009.
[12]
B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG: Probabilistic models with unknown objects. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1352--1359, 2005.
[13]
A. Pfeffer. IBAL: A probabilistic rational programming language. In International Joint Conference on Artificial Intelligence (IJCAI), pages 733--740. Morgan Kaufmann Publ., 2001.
[14]
A. Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River Analytics Technical Report, 2009.
[15]
D. Poole. The independent choice logic and beyond. Probabilistic inductive logic programming, pages 222--243, 2008.
[16]
M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62: 107--136, 2006.
[17]
T. Sato and Y. Kameya. PRISM: A symbolic-statistical modeling language. In International Joint Conference on Artificial Intelligence (IJCAI), 1997.
[18]
A. Stuhlmüller and N. Goodman. A dynamic programming algorithm for inference in recursive probabilistic programs. arXiv preprint arXiv:1206.3555, 2012.
[19]
D. Wingate, N. Goodman, A. Stuhlmueller, and J. Siskind. Nonstandard interpretations of probabilistic programs for efficient inference. In Advances in Neural Information Processing Systems 23, 2011.
[20]
D. Wingate, A. Stuhlmueller, and N. Goodman. Lightweight implementations of probabilistic programming languages via transformational compilation. In pProceedings of the 14th international conference on Artificial Intelligence and Statistics, page 131, 2011.
[21]
L. Yang, P. Hanrahan, and N. Goodman. Incrementalizing mcmc on probabilistic programs through tracing and slicing. Under review.
[22]
Y. Yeh, L. Yang, M. Watson, N. Goodman, and P. Hanrahan. Synthesizing open worlds with constraints using locally annealed reversible jump mcmc. ACM Transactions on Graphics (TOG), 31 (4): 56, 2012.

Cited By

View all
  • (2024)Rational representations of uncertainty: a pluralistic approach to bounded rationalitySynthese10.1007/s11229-024-04586-z203:5Online publication date: 26-Apr-2024
  • (2023)Probabilistic Error Reasoning on IoT Edge Devices2023 IEEE International Conference on Edge Computing and Communications (EDGE)10.1109/EDGE60047.2023.00031(140-149)Online publication date: Jul-2023
  • (2023)What are the fundamental software abstractions for designing reliable cyber-physical systems operating in uncertain environments?Research Directions: Cyber-Physical Systems10.1017/cbp.2023.41Online publication date: 24-Jul-2023
  • Show More Cited By

Index Terms

  1. The principles and practice of probabilistic programming

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGPLAN Notices
    ACM SIGPLAN Notices  Volume 48, Issue 1
    POPL '13
    January 2013
    561 pages
    ISSN:0362-1340
    EISSN:1558-1160
    DOI:10.1145/2480359
    Issue’s Table of Contents
    • cover image ACM Conferences
      POPL '13: Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages
      January 2013
      586 pages
      ISBN:9781450318327
      DOI:10.1145/2429069

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 January 2013
    Published in SIGPLAN Volume 48, Issue 1

    Check for updates

    Author Tags

    1. probabilistic models
    2. probabilistic programs

    Qualifiers

    • Keynote

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)53
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Rational representations of uncertainty: a pluralistic approach to bounded rationalitySynthese10.1007/s11229-024-04586-z203:5Online publication date: 26-Apr-2024
    • (2023)Probabilistic Error Reasoning on IoT Edge Devices2023 IEEE International Conference on Edge Computing and Communications (EDGE)10.1109/EDGE60047.2023.00031(140-149)Online publication date: Jul-2023
    • (2023)What are the fundamental software abstractions for designing reliable cyber-physical systems operating in uncertain environments?Research Directions: Cyber-Physical Systems10.1017/cbp.2023.41Online publication date: 24-Jul-2023
    • (2023)Generative Datalog and Answer Set Programming – Extended AbstractLogics in Artificial Intelligence10.1007/978-3-031-43619-2_1(3-10)Online publication date: 24-Sep-2023
    • (2021)Applying Probabilistic Programming to Affective ComputingIEEE Transactions on Affective Computing10.1109/TAFFC.2019.290521112:2(306-317)Online publication date: 1-Apr-2021
    • (2020)Flexible Probabilistic Modeling for Search Based Test Data GenerationProceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops10.1145/3387940.3392215(537-540)Online publication date: 27-Jun-2020
    • (2018)Computational Models of Emotion Inference in Theory of Mind: A Review and RoadmapTopics in Cognitive Science10.1111/tops.1237111:2(338-357)Online publication date: 31-Jul-2018
    • (2018)Predictive coding and thoughtSynthese10.1007/s11229-018-1768-xOnline publication date: 24-Mar-2018
    • (2017)A declarative approach to data-driven fact checkingProceedings of the Thirty-First AAAI Conference on Artificial Intelligence10.5555/3298239.3298262(147-153)Online publication date: 4-Feb-2017
    • (2017)Probabilistic Horn Clause VerificationStatic Analysis10.1007/978-3-319-66706-5_1(1-22)Online publication date: 19-Aug-2017
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media