skip to main content
10.1145/2433396.2433446acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

App recommendation: a contest between satisfaction and temptation

Authors Info & Claims
Published:04 February 2013Publication History

ABSTRACT

Due to the huge and still rapidly growing number of mobile applications (apps), it becomes necessary to provide users an app recommendation service. Different from conventional item recommendation where the user interest is the primary factor, app recommendation also needs to consider factors that invoke a user to replace an old app (if she already has one) with a new app. In this work we propose an Actual- Tempting model that captures such factors in the decision process of mobile app adoption. The model assumes that each owned app has an actual satisfactory value and a new app under consideration has a tempting value. The former stands for the real satisfactory value the owned app brings to the user while the latter represents the estimated value the new app may seemingly have. We argue that the process of app adoption therefore is a contest between the owned apps' actual values and the candidate app's tempting value. Via the extensive experiments we show that the AT model performs significantly better than the conventional recommendation techniques such as collaborative filtering and content-based recommendation. Furthermore, the best recommendation performance is achieved when the AT model is combined with them.

References

  1. D. Agarwal and B.-C. Chen. flda: matrix factorization through latent dirichlet allocation. In WSDM, pages 91--100, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Barbieri and G. Manco. An analysis of probabilistic methods for top-n recommendation in collaborative filtering. In ECML/PKDD (1), pages 172--187, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. J. Belkin and W. B. Croft. Information filtering and information retrieval: two sides of the same coin? Commun. ACM, 35(12):29--38, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993--1022, 2003. Google ScholarGoogle ScholarCross RefCross Ref
  5. C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl., 6(1):1--6, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. H.-C. Chen and A. L. P. Chen. A music recommendation system based on music data grouping and user interests. In CIKM, pages 231--238, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K.-W. Cheung, J. T. Kwok, M. H. Law, and K.-C. Tsui. Mining customer product ratings for personalized marketing. Decis. Support Syst., 35(2):231--243, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. Costa-Montenegro, A. B. Barragans-Mart1nez, and M. Rey-Lopez. Which app? a recommender system of applications in markets: Implementation of the service for monitoring users' interaction. Expert Syst. Appl., 39(10):9367--9375, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In RecSys, pages 39--46, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Davidsson and S. Moritz. Utilizing implicit feedback and context to recommend mobile applications from first use. In CaRR, pages 19--22, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Graziano. Apple's app store reaches 25 billion downloads. http://www.bgr.com/2012/03/05/apples-appstore-reaches-25-billion-downloads/, 2012.Google ScholarGoogle Scholar
  13. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In SIGIR, pages 230--237, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. Lekakos and P. Caravelas. A hybrid approach for movie recommendation. Multimedia Tools Appl., 36(1-2):55--70, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems: State of the art and trends. In Recommender Systems Handbook, pages 73--105. 2011.Google ScholarGoogle ScholarCross RefCross Ref
  17. H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, pages 287--296, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. J. Mooney and L. Roy. Content-based book recommending using learning for text categorization. In DL, pages 195--204, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The Adaptive Web: Methos and Strategies of Web Personalization, pages 325-341. Springer-Verlag, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. C. Platt. Probabilities for SV Machines, pages 61--74. MIT Press, 2000.Google ScholarGoogle Scholar
  21. J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, pages 713--719, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, pages 880--887, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Shan and A. Banerjee. Generalized probabilistic matrix factorizations for collaborative filtering. Technical report, University of Minnesota, Twin Cities, 2010.Google ScholarGoogle Scholar
  27. H. Shan and A. Banerjee. Generalized probabilistic matrix factorizations for collaborative filtering. In ICDM, pages 1025--1030, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML, pages 720--727, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Srebro, J. D. M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In NIPS, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Steyvers and T. Griffiths. Handbook of Latent Semantic Analysis, chapter Probabilistic Topic Models.Google ScholarGoogle Scholar
  31. J. T. Text categorization with support vector machines : Learning with many relevant features. ECML, pages 137--142, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., 1995. Google ScholarGoogle ScholarCross RefCross Ref
  33. J. Wang and Y. Zhang. Utilizing marginal net utility for recommendation in e-commerce. In SIGIR, pages 1003--1012, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. M. Weiss. Mining with rarity: a unifying framework. SIGKDD Explor. Newsl., 6(1):7--19, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman. Identifying diverse usage behaviors of smartphone apps. In IMC, pages 329--344, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. B. Yan and G. Chen. Appjoy: personalized mobile application discovery. In MobiSys, pages 113--126, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng. Collaborative competitive filtering: learning recommender using context of user choice. In SIGIR, pages 295--304, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Ye, P. Yin, andW.-C. Lee. Location recommendation for location-based social networks. In GIS, pages 458--461, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Ye, P. Yin, W.-C. Lee, and D. L. Lee. Exploiting geographical influence for collaborative point-of-interest recommendation. In SIGIR, pages 325--334, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Yu, A. Schwaighofer, and V. Tresp. Collaborative ensemble learning: combining collaborative and content-based information filtering via hierarchical bayes. In UAI, pages 616--623, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences, 107:4511--4515, 2010.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. App recommendation: a contest between satisfaction and temptation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      WSDM '13: Proceedings of the sixth ACM international conference on Web search and data mining
      February 2013
      816 pages
      ISBN:9781450318693
      DOI:10.1145/2433396

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 February 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate498of2,863submissions,17%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader