skip to main content
10.1145/2459236.2459261acmotherconferencesArticle/Chapter ViewAbstractPublication PagesahConference Proceedingsconference-collections
research-article

Investigation of fNIRS brain sensing as input to information filtering systems

Published:07 March 2013Publication History

ABSTRACT

Today's users interact with an increasing amount of information, demanding a similar increase in attention and cognition. To help cope with information overload, recommendation engines direct users' attention to content that is most relevant to them. We suggest that functional near-infrared spectroscopy (fNIRS) brain measures can be used as an additional channel to information filtering systems. Using fNIRS, we acquire an implicit measure that correlates with user preference, thus avoiding the cognitive interruption that accompanies explicit preference ratings. We explore the use of fNIRS in information filtering systems by building and evaluating a brain-computer movie recommender. We find that our system recommends movies that are rated higher than in a control condition, improves recommendations with increased interaction with the system, and provides recommendations that are unique to each individual.

References

  1. H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral. Optical brain monitoring for operator training and mental workload assessment. NeuroImage, 59(1):36--47, Jan. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Bailey, J. Konstan, and J. Carlis. The effects of interruptions on task performance, annoyance, and anxiety in the user interface. In INTERACT, volume 1, 2001.Google ScholarGoogle Scholar
  3. B. P. Bailey and S. T. Iqbal. Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Transactions on Computer-Human Interaction, 14(4):1--28, Jan. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. J. Barnum and C. A. Mattson. A Computationally Assisted Methodology for Preference-Guided Conceptual Design. Journal of Mechanical Design, 132(12):121003, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Bechara, H. Damasio, A. R. Damasio, and G. P. Lee. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19(13):5473--81, July 1999.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Calcanis, V. Callaghan, M. Gardner, and M. Walker. Towards end-user physiological profiling for video recommendation engines. Intelligent Environments, pages 1C2--1C2, 2008.Google ScholarGoogle Scholar
  7. I. Cantador, P. Brusilovsky, and T. Kuflik. Second workshop on information heterogeneity and fusion in recommender systems (HetRec2011). RecSys 2011, pages 387--388, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Claypool, D. Brown, and P. Le. Inferring user interest. IEEE Internet Computing, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. Cutrell and D. Tan. BCI for passive input in HCI. In ACM CHI, volume 8, pages 1--3. Citeseer, 2007.Google ScholarGoogle Scholar
  10. M. Deppe, W. Schwindt, H. Kugel, and H. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging, 15:171--182, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. H. Fairclough. Fundamentals of Physiological Computing. Interacting with Computers, 21:133--145, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. Fu, J. Budzik, and K. Hammond. Mining navigation history for recommendation. In IUI '00, New York, New York, USA, 2000. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. Gajos and D. S. Weld. Preference elicitation for interface optimization. UIST '05, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. George and A. Lécuyer. An overview of research on 'passive' brain-computer interfaces for implicit human-computer interaction. In International Conference on Applied Bionics and Biomechanics, 2010.Google ScholarGoogle Scholar
  15. A. Girouard, E. T. Solovey, L. M. Hirshfield, E. M. Peck, K. Chauncey, A. Sassaroli, S. Fantini, and R. J. Jacob. From Brain Signals to Adaptive Interfaces: Using fNIRS in HCI. In Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction. Springer, 2010.Google ScholarGoogle Scholar
  16. J. Gluck, A. Bunt, and J. Mcgrenere. Matching Attentional Draw with Utility in Interruption. In CHI '07, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Hall, E. Frank, G. Holmes, and B. Pfahringer. The WEKA data mining software: an update. In ACM SIGKDD, volume 11, pages 10--18, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Healey, R. Picard, and F. Dabek. A New Affect-Perceiving Interface and Its Application to Personalized Music Selection The Affective DJ: Music Selection with the. Workshop on Perceptual User Interfaces, pages 2--5, 1998.Google ScholarGoogle Scholar
  19. L. M. Hirshfield, R. Gulotta, S. Hirshfield, S. Hincks, M. Russel, R. Ward, T. Williams, and R. J. K. Jacob. This is Your Brain on Interfaces: Enhancing Usability Testing with Functional Near-Infrared Spectroscopy. In CHI '11, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. M. Hirshfield, E. T. Solovey, A. Girouard, J. Kebinger, R. J. K. Jacob, A. Sassaroli, and S. Fantini. Brain Measurement for Usability Testing and Adaptive Interfaces: An Example of Uncovering Syntactic Workload with Functional Near Infrared Spectroscopy. In CHI '09, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Horvitz and J. Apacible. Learning and reasoning about interruption. In Multimodal Interfaces '03, pages 20--27. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Huber, D. Ariely, and G. Fischer. Expressing Preferences in a Principal-Agent Task: A Comparison of Choice, Rating and Matching. Organizational Behavior and Human Decision Processes, 87(1):66--90, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  23. S. Koelstra, A. Yazdani, M. Soleymani, C. Muhl, J. Lee, A. Nijholt, T. Pun, T. Ebrahimi, and I. Patras. Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos. Brain Informatics, pages 89--100, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Kohlmorgen, G. Dornhege, M. Braun, B. Blankertz, K.-R. Muller, G. Curio, K. Hagemann, A. Bruns, M. Schrauf, and W. E. Kincses. Improving human performance in a real operating environment through real-time mental workload detection. In Toward Brain-Computer Interfacing, pages 409--422. MIT Press, 2007.Google ScholarGoogle Scholar
  25. S. Luu and T. Chau. Decoding subjective preference from single-trial near-infrared spectroscopy signals. Journal of Neural Engineering, 6, 2008.Google ScholarGoogle Scholar
  26. G. Mark and D. Gudith. The cost of interrupted work: more speed and stress. In CHI '08, pages 8--11, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Marx and C. Schmandt. CLUES: dynamic personalized message filtering. In CSCW '96. ACM, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. M. McClure, J. Li, D. Tomlin, K. S. Cypert, L. M. Montague, and P. R. Montague. Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2):379--87, Oct. 2004.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Morita and Y. Shinoda. Information filtering based on user behavior analysis and best match text retrieval. In SIGIR '94, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Nichols. Implicit rating and filtering. In DELOS Workshop on Filtering and Collaborative Filtering. Citeseer, 1997.Google ScholarGoogle Scholar
  31. J. Parsons, P. Ralph, and K. Gallagher. Using viewing time to infer user preference in recommender systems. In AAAI Workshop on Semantic Web Personalization, 2004.Google ScholarGoogle Scholar
  32. M. P. Paulus and L. R. Frank. Ventromedial prefrontal cortex activation is critical for preference judgments. Neuroreport, 14(10):1311--5, July 2003.Google ScholarGoogle ScholarCross RefCross Ref
  33. H. A. Simon. Designing Organizations for an Information-Rich World. Computers, Communications, and the Public Interest, pages 37--72, 1971.Google ScholarGoogle Scholar
  34. E. Solovey, P. Schermerhorn, M. Scheutz, A. Sassaroli, S. Fantini, and R. Jacob. Brainput: Enhancing Interactive Systems with Streaming fNIRS Brain Input. In CHI '12. ACM Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. E. T. Solovey, A. Girouard, K. Chauncey, L. M. Hirshfield, A. Sassaroli, F. Zheng, S. Fantini, and R. J. K. Jacob. Using fNIRS Brain Sensing in Realistic HCI Settings: Experiments and Guidelines. In UIST '09, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas. A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation. NeuroImage, 17(2):719--731, Oct. 2002.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Teevan, S. Dumais, and E. Horvitz. Characterizing the value of personalizing search. In Proc. of Research and Development in Information Retrieval 2007. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Villringer and B. Chance. Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20(10):435--42, Oct. 1997.Google ScholarGoogle ScholarCross RefCross Ref
  39. T.-L. Wu, Y.-P. Hung, Y.-Y. Chuang, H.-H. Chen, H. H. Chen, J.-H. Chen, S.-K. Jeng, H.-K. Wang, C.-C. Ho, Y.-P. Lin, T.-T. Hu, M.-F. Weng, L.-W. Chan, C.-H. Yang, and Y.-H. Yang. Interactive content presentation based on expressed emotion and physiological feedback. ACM Multimedia, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. Zander, C. Kothe, S. Jatzev, and M. Gaertner. Enhancing human-computer interaction with input from active and passive brain-computer interfaces. Brain-Computer Interfaces, pages 181--199, 2010.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Investigation of fNIRS brain sensing as input to information filtering systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      AH '13: Proceedings of the 4th Augmented Human International Conference
      March 2013
      254 pages
      ISBN:9781450319041
      DOI:10.1145/2459236

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 March 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      AH '13 Paper Acceptance Rate49of69submissions,71%Overall Acceptance Rate121of306submissions,40%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader