skip to main content
research-article

Mesh denoising via L0 minimization

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present an algorithm for denoising triangulated models based on L0 minimization. Our method maximizes the flat regions of the model and gradually removes noise while preserving sharp features. As part of this process, we build a discrete differential operator for arbitrary triangle meshes that is robust with respect to degenerate triangulations. We compare our method versus other anisotropic denoising algorithms and demonstrate that our method is more robust and produces good results even in the presence of high noise.

Skip Supplemental Material Section

Supplemental Material

tp110.mp4

mp4

19.9 MB

References

  1. Bajaj, C. L., and Xu, G. 2003. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 22, 1, 4--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Candes, E., Romberg, J., and Tao, T. 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2, 489--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Clarenz, U., Diewald, U., and Rumpf, M. 2000. Anisotropic geometric diffusion in surface processing. VIS, 397--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. SIGGRAPH, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 2000. Anisotropic feature-preserving denoising of height fields and bivariate data. Graphics Interface, 145--152.Google ScholarGoogle Scholar
  6. Donoho, D. 2006. Compressed sensing. IEEE Transactions on Information Theory 52, 4, 1289--1306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dziuk, G. 1990. An algorithm for evolutionary surfaces. Numerische Mathematik 58, 1, 603--611.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. El Ouafdi, A. F., Ziou, D., and Krim, H. 2008. A smart stochastic approach for manifolds smoothing. In Proceedings of the Symposium on Geometry Processing, 1357--1364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fan, H., Yu, Y., and Peng, Q. 2010. Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. Comp. Graph. 16, 2, 312--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. SIGGRAPH, 950--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Floater, M., Hormann, K., and Kos, G. 2006. A general construction of barycentric coordinates over convex polygons. Advances in Comp. Math 24, 311--331.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hildebrandt, K., and Polthier, K. 2004. Anisotropic filtering of non-linear surface features. Computer Graphis Forum 23, 3, 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  13. Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-iterative, feature-preserving mesh smoothing. SIGGRAPH, 943--949. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can mean-curvature flow be modified to be non-singular? Computer Graphics Forum 31, 5, 1745--1754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kim, B., and Rossignac, J. 2005. Geofilter: Geometric selection of mesh filter parameters. Computer Graphis Forum 24, 3, 295--302.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lee, K.-W., and Wang, W.-P. 2005. Feature-preserving mesh denoising via bilateral normal filtering. In Proceedings of Computer Aided Design and Computer Graphics, 275--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital michelangelo project: 3d scanning of large statues. SIGGRAPH, 131--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. Graph. 26, 3, 22:1--22:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, X., Bao, H., Shum, H.-Y., and Peng, Q. 2002. A novel volume constrained smoothing method for meshes. Graphical Models 64, 169--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mallet, J.-L. 1989. Discrete smooth interpolation. ACM Trans. Graph. 8, 2, 121--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. 2006. Laplacian mesh optimization. GRAPHITE, 381--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pinkall, U., Juni, S. D., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  23. Schaefer, S., Ju, T., and Warren, J. 2007. A unified, integral construction for coordinates over closed curves. Computer Aided Geometric Design 24, 8-9, 481--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shen, Y., and Barner, K. E. 2004. Fuzzy vector median-based surface smoothing. IEEE Trans. Vis. Comp. Graph. 10, 3, 252--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sivan Toledo, D. C., and Rotkin, V. 2001. Taucs: A library of sparse linear solvers.Google ScholarGoogle Scholar
  26. Su, Z., Wang, H., and Cao, J. 2009. Mesh denoising based on differential coordinates. Shape Modeling International, 1--6.Google ScholarGoogle Scholar
  27. Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. 2007. Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comp. Graph., 925--938. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. 2008. Random walks for feature-preserving mesh denoising. Computer Aided Geometric Design 25, 7, 437--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. VIS, 125--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Taubin, G. 1995. A signal processing approach to fair surface design. SIGGRAPH, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Taubin, G. 2001. Linear anisotropic mesh filtering. IBM Research Report RC22213(W0110-051).Google ScholarGoogle Scholar
  32. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tschumperlé, D. 2006. Fast anisotropic smoothing of multivalued images using curvature-preserving pde's. Int. J. Comput. Vision 68, 1, 65--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Vollmer, J., Mencl, R., and Mller, H. 1999. Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum 18, 3, 131--138.Google ScholarGoogle ScholarCross RefCross Ref
  35. Wang, C. C. L. 2006. Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Trans. Vis. Comp. Graph. 12, 4, 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xu, L., Lu, C., Xu, Y., and Jia, J. 2011. Image smoothing via l0 gradient minimization. ACM Trans. Graph. 30, 6, 174:1--174:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yagou, H., Ohtake, Y., and Belyaev, A. 2002. Mesh smoothing via mean and median filtering applied to face normals. GMP, 124--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yagou, H., Ohtake, Y., and Belyaev, A. G. 2003. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. Computer Graphics International Conference, 28--33.Google ScholarGoogle Scholar
  39. Zheng, Y., Fu, H., Au, O. K.-C., and Tai, C.-L. 2011. Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comp. Graph. 17, 10, 1521--1530. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mesh denoising via L0 minimization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader