skip to main content
10.1145/2463209.2488785acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures

Published:29 May 2013Publication History

ABSTRACT

Optimization of the interaction distance between qubits to map a quantum circuit into one-dimensional quantum architectures is addressed. The problem is formulated as the Minimum Linear Arrangement (MinLA) problem. To achieve this, an interaction graph is constructed for a given circuit, and multiple instances of the MinLA problem for selected subcircuits of the initial circuit are formulated and solved. In addition, a lookahead technique is applied to improve the cost of the proposed solution which examines different subcircuit candidates. Experiments on quantum circuits for quantum Fourier transform and reversible benchmarks show the effectiveness of the approach.

References

  1. D. Cheung, D. Maslov, and S. Severini. Translation techniques between quantum circuit architectures. Workshop on Quant. Inf. Proc., Dec 2007.Google ScholarGoogle Scholar
  2. H. Häffner et al. Scalable multiparticle entanglement of trapped ions. Nature, 438:643--646, Dec 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Laforest et al. Using error correction to determine the noise model. Phys. Rev. A, 75(1):133--137, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. Douçot, L. B. Ioffe, and J. Vidal. Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation. Phys. Rev. B, 69(21):214501, Jun 2004.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. A. Pérez-Delgado, M. Mosca, P. Cappellaro, D. G. Cory. Single spin measurement using cellular automata techniques. Phys. Rev. Lett., 97(10):100501, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. Takahashi, N. Kunihiro, and K. Ohta. The quantum Fourier transform on a linear nearest neighbor architecture. Quant. Inf. Comput., 7:383--391, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Maslov. Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite neighbor quantum architectures. Phys. Rev. A, 76, 2007.Google ScholarGoogle Scholar
  8. A. G. Fowler, S. J. Devitt, and L. Hollenberg. Implementation of Shor's algorithm on a linear nearest neighbour qubit array. Quant. Inf. Comput., 4:237--245, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. A. Kutin. Shor's algorithm on a nearest-neighbor machine. Asian Conf. on Quant. Inf. Sci., 2007.Google ScholarGoogle Scholar
  10. P. Pham, K. Svore. A 2D nearest-neighbor quantum architecture for factoring. arXiv:1207.6655, 2012.Google ScholarGoogle Scholar
  11. B.-S. Choi and R. Van Meter. On the effect of quantum interaction distance on quantum addition circuits. J. Emerg. Technol. Comput. Sys., 7(3):11:1--11:17, August 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. G. Fowler, C. D. Hill, L. Hollenberg. Quantum error correction on linear nearest neighbor qubit arrays. Phys. Rev. A, 69:042314.1--042314.4, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Arabzadeh, M. Saheb Zamani, M. Sedighi, and M. Saeedi. Depth-optimized reversible circuit synthesis. Quant. Inf. Proc., 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Möttönen, J. J. Vartiainen. Decompositions of general quantum gates. Ch. 7 in Trends in Quantum Computing Research, NOVA Publishers, 2006.Google ScholarGoogle Scholar
  15. V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum-logic circuits. IEEE Trans. CAD, 25(6):1000--1010, June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Saeedi, M. Arabzadeh, M. Saheb Zamani, and M. Sedighi. Block-based quantum-logic synthesis. Quant. Inf. Comput., 11(3--4):0262--0277, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Saeedi, M. Saheb Zamani, M. Sedighi, and Z. Sasanian. Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. Sys., 6(4):13:1--13:26, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Saeedi, R. Wille, and R. Drechsler. Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Inf. Proc., 10(3):355--377, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima. An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quant. Inf. Comput., 11(1--2):0142--0166, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Saeedi and I. L. Markov. Synthesis and optimization of reversible circuits - a survey. ACM Computing Surveys, to appear, arXiv:1110.2574, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale ion-trap quantum computers. Nature, 417:709--711, Jun 2002.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. Van Meter and M. Oskin. Architectural implications of quantum computing technologies. J. Emerg. Technol. Comput. Sys., 2(1):31--63, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge Univ. Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Kutin, D. Moulton, and L. Smithline. Computation at a distance. Chicago J. of Theor. Comput. Sci., 2007.Google ScholarGoogle Scholar
  25. J. Petit. Experiments on the minimum linear arrangement problem. J. Exp. Algorithmics, 8, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Wille et al. RevLib: An online resource for reversible functions and reversible circuits. Int'l Symp. on Multiple-Valued Logic, pages 220--225, May 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Oswald, G. Reinelt, and S. Wiesberg. Exact solution of the 2-dimensional grid arrangement problem. Discrete Optimization, 9(3):189--199, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. Maslov, S. M. Falconer, M. Mosca. Quantum circuit placement. IEEE Trans. CAD, 27(4):752--763, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      DAC '13: Proceedings of the 50th Annual Design Automation Conference
      May 2013
      1285 pages
      ISBN:9781450320719
      DOI:10.1145/2463209

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 May 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,770of5,499submissions,32%

      Upcoming Conference

      DAC '24
      61st ACM/IEEE Design Automation Conference
      June 23 - 27, 2024
      San Francisco , CA , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader