skip to main content
10.1145/2463372.2463536acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Cluster energy optimizing genetic algorithm

Published:06 July 2013Publication History

ABSTRACT

Nanoclusters are small clumps of atoms of one or several materials. A cluster possesses a unique set of material properties depending on its configuration (i.e. the number of atoms, their types, and their exact relative positioning). Finding and subsequently testing these configurations is of great interest to physicists in search of new advantageous material properties. To facilitate the discovery of ideal cluster configurations, we propose the Cluster Energy Optimizing GA (CEO-GA), which combines the strengths of Johnston's BCGA [18], Pereira's H-C&S crossover [25], and two new mutation operators: Local Spherical and Center of Mass Spherical. The advantage of CEO-GA is its ability to evolve optimally stable clusters (those with lowest potential energy) without relying on local optimization methods, as do other commonly used cluster evolving GAs, such as BCGA.

References

  1. M. P. Andrews and S. C. O'Brien. Gas-phase "molecular alloys" of bulk immiscible elements: iron-silver (FexAgy). The Journal of Physical Chemistry, 96(21):8233--8241, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  2. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, and C. Mottet. Crossover among structural motifs in transition and noble-metal clusters. Journal of Chemical Physics, 116:3856--3863, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  3. G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, and R. Ferrando. Electronic and structural shell closure in AgCu and AuCu nanoclusters. The Journal of Physical Chemistry B, 110(46):23197--23203, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  4. F. Y. Chen and R. L. Johnston. Structure and spectral characteristics of the nanoalloy Ag3Au10. Applied Physics Letters, 90(15):153123, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. F. Cleri and V. Rosato. Tight-binding potentials for transition metals and alloys. Physical Review B, 48:22--33, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  6. B. C. Curley, G. Rossi, R. Ferrando, and R. L. Johnston. Theoretical study of structure and segregation in 38-atom Ag-Au nanoalloys. The European Physical Journal D, 43:53--56, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  7. S. Darby, T. V. Mortimer-Jones, R. L. Johnson, and C. Roberts. Theoretical study of Cu-Au nanoalloy clusters using a genetic algorithm. Journal of Chemical Physics, 116(4):1536--1550, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. M. Deaven and K. M. Ho. Molecular geometry optimization with a genetic algorithm. Physical Review Letters, 75(2):288--291, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Ferrando, A. Fortunelli, and R. L. Johnston. Searching for the optimum structures of alloy nanoclusters. Physical Chemistry Chemical Physics, 10:640--649, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Hartke. Global geometry optimization of clusters using genetic algorithms. The Journal of Physical Chemistry, 97(39):9973--9976, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  12. B. Hartke. Global cluster geometry optimization by a phenotype algorithm with niches: Location of elusive minima, and low-order scaling with cluster size. Journal of Computational Chemistry, 20(16):1752--1759, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Heiles, A. J. Logsdail, R. Schäfer, and R. L. Johnston. Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. Nanoscale, 4:1109--1115, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Ismail and R. L. Johnston. Investigation of the structures and chemical ordering of small pd-au clusters as a function of composition and potential parameterisation. Physical Chemistry Chemical Physics, 12:8607--8619, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Jellinek and E. B. Krissinel. Theory of Atomic and Molecular Clusters. Springer, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. R. Jennison, P. A. Schultz, and M. P. Sears. Ab initio calculations of Ru, Pd, and Ag cluster structure with 55, 135, and 140 atoms. Journal of Chemical Physics, 106(5):1856--1862, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  17. R. L. Johnston. Atomic & Molecular Clusters. CRC Press, 2002.Google ScholarGoogle Scholar
  18. R. L. Johnston. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Transactions, 0:4193--4207, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  19. W. Kohn, A. D. Becke, and R. G. Parr. Density functional theory of electronic structure. The Journal of Physical Chemistry, 100(31):12974--12980, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(3):503--528, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. J. Logsdail and R. L. Johnston. Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC Advances, 2:5863--5869, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. A. Lordeiro, F. F. Guimarães, J. C. Belchior, and R. L. Johnston. Determination of main structural compositions of nanoalloy clusters of CuxAuy(x+y ≤ 30) using a genetic algorithm approach. International Journal of Quantum Chemistry, 95(2):112--125, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. P. K. Doye and D. J. Wales. Structural consequences of the range of the interatomic potential a menagerie of clusters. Journal of the Chemical Society, Faraday Transactions, 93:4233--4243, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  24. L. O. Paz-Borbon, A. Gupta, and R. L. Johnston. Dependence of the structures and chemical ordering of pd-pt nanoalloys on potential parameters. Journal of Materials Chemistry, 18:4154--4164, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. F. Pereira and J. Marques. Towards an effective evolutionary approach for binary lennard-jones clusters. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC), pages 1--7, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  26. F. B. Pereira, J. Marques, T. Leitão, and J. Tavares. Designing efficient evolutionary algorithms for cluster optimization: A study on locality. In P. Siarry and Z. Michalewicz, editors, Advances in Metaheuristics for Hard Optimization, Natural Computing Series, pages 223--250. Springer Berlin Heidelberg, 2008.Google ScholarGoogle Scholar
  27. F. B. Pereira and J. M. C. Marques. Analysis of Crossover Operators for Cluster Geometry Optimization, volume 46 of Computational Intelligence for Engineering Systems Intelligent Systems, Control and Automation: Science and Engineering, pages 77--89. Springer Netherlands, 2011.Google ScholarGoogle Scholar
  28. C. Roberts, R. L. Johnston, and N. T. Wilson. A genetic algorithm for the structural optimization of morse clusters. Theoretical Chemistry Accounts, 104:123--130, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  29. K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99--127, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. T. Tran and R. L. Johnston. Theoretical study of Cu38-nAun clusters using a combined empirical potential-density functional approach. Physical Chemistry Chemical Physics, 11:10340--10349, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  31. Y. Xiao and D. E. Williams. Genetic algorithm: a new approach to the prediction of the structure of molecular clusters. Chemical Physics Letters, 215(1--3):17--24, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  32. Y. Zeiri. Prediction of the lowest energy structure of clusters using a genetic algorithm. Physical Review E, 51:R2769--R2772, 1995.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Cluster energy optimizing genetic algorithm

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '13: Proceedings of the 15th annual conference on Genetic and evolutionary computation
        July 2013
        1672 pages
        ISBN:9781450319638
        DOI:10.1145/2463372
        • Editor:
        • Christian Blum,
        • General Chair:
        • Enrique Alba

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 July 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        GECCO '13 Paper Acceptance Rate204of570submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader