skip to main content
research-article

Query-Driven Procedures for Hybrid MKNF Knowledge Bases

Authors Info & Claims
Published:01 June 2013Publication History
Skip Abstract Section

Abstract

Hybrid MKNF knowledge bases are one of the most prominent tightly integrated combinations of open-world ontology languages with closed-world (nonmonotonic) rule paradigms. Based on the logic of minimal knowledge and negation as failure (MKNF), the definition of Hybrid MKNF is parametric on the description logic (DL) underlying the ontology language, in the sense that nonmonotonic rules can extend any decidable DL language. Two related semantics have been defined for Hybrid MKNF: one that is based on the Stable Model Semantics for logic programs and one on the Well-Founded Semantics (WFS). Under WFS, the definition of Hybrid MKNF relies on a bottom-up computation that has polynomial data complexity whenever the DL language is tractable. Here we define a general query-driven procedure for Hybrid MKNF that is sound with respect to the stable model-based semantics, and sound and complete with respect to its WFS variant. This procedure is able to answer a slightly restricted form of conjunctive queries, and is based on tabled rule evaluation extended with an external oracle that captures reasoning within the ontology. Such an (abstract) oracle receives as input a query along with knowledge already derived, and replies with a (possibly empty) set of atoms, defined in the rules, whose truth would suffice to prove the initial query. With appropriate assumptions on the complexity of the abstract oracle, the general procedure maintains the data complexity of the WFS for Hybrid MKNF knowledge bases.

To illustrate this approach, we provide a concrete oracle for EL+, a fragment of the lightweight DL EL++. Such an oracle has practical use, as EL++ is the language underlying OWL 2 EL, which is part of the W3C recommendations for the Semantic Web, and is tractable for reasoning tasks such as subsumption. We show that query-driven Hybrid MKNF preserves polynomial data complexity when using the EL+ oracle and WFS.

References

  1. Alferes, J. J., Knorr, M., and Swift, T. 2009. Queries to hybrid MKNF knowledge bases through oracular tabling. In Proceedings of the 8th International Semantic Web Conference (ISWC’09). A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan Eds., Springer, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baader, F., Brandt, S., and Lutz, C. 2005. Pushing the EL envelope. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05). L. P. Kaelbing and A. Saffiotti Eds., Morgan Kaufmann, 364--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., Eds. 2007. The Description Logic Handbook: Theory, Implementation, and Applications 2nd Ed. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bienvenu, M. 2008. Complexity of abduction in the EL family of lightweight description logics. In Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR’08). 220--230.Google ScholarGoogle Scholar
  5. Boley, H. and Kifer, M., Eds. 2010. RIF Overview. W3C Candidate Recommendation. http://www.w3.org/TR/rif-overview/.Google ScholarGoogle Scholar
  6. Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs. J. ACM 43, 1, 20--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Drabent, W. and Małuszyński, J. 2007. Well-Founded semantics for hybrid rules. In Proceedings of the 1st International Conference on Web Reasoning and Rule Systems (RR’07). M. M. Marchiori, J. Z. Pan, and C. de Sainte Marie Eds., Springer, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. 2006. Effective integration of declarative rules with external evaluations for semantic web reasoning. In Proceedings of the 3rd European Conference on Semantic Web (ESWC’06). Y. Sure and J. Domingue Eds., Springer, 273--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. 2008. Combining answer set programming with description logics for the Semantic Web. Artif. Intell. 172, 12--13, 1495--1539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eiter, T., Ianni, G., Lukasiewicz, T., and Schindlauer, R. 2011. Well-founded semantics for description logic programs in the Semantic Web. ACM Trans. Comput. Logic 12, 11:1--11:41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive databases. New Generation Comput. 9, 365--385.Google ScholarGoogle ScholarCross RefCross Ref
  12. Glimm, B., Lutz, C., Horrocks, I., and Sattler, U. 2008. Answering conjunctive queries in the SHIQ description logic. J. Artif. Intell. Res. 31, 150--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gomes, A. S., Alferes, J. J., and Swift, T. 2010. Implementing query answering for hybrid MKNF knowledge bases. In Proceedings 12th International Symposium on Practical Aspects of Declarative Languages (PADL’01). M. Carro and R. Peña Eds., Springer, 25--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. 2003. Description logic programs: Combining logic programs with description logics. In Proceedings of the World Wide Web Conference (WWW’03). ACM, 48--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S., Eds. 2009. OWL 2 Web Ontology Language: Primer. W3C Recommendation. http://www.w3.org/TR/owl2-primer/.Google ScholarGoogle Scholar
  16. Knorr, M. and Alferes, J. J. 2010. Querying in EL + with nonmonotonic rules. In Proceedings of the 19th European Conference on Artificial Intelligence (ECAI’10). H. Coelho, R. Studer, and M. Wooldridge Eds., IOS Press, 1079--1080. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Knorr, M. and Alferes, J. J. 2011. Querying OWL 2 QL to hybrid MKNF and non-monotonic rules. In Proceedings of the 10th International Semantic Web Conference, Semantic Web (ISWC’11). Part I. L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. F. Noy, and E. Blomqvist Eds., Springer, 338--353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Knorr, M., Alferes, J. J., and Hitzler, P. 2008. A coherent well-founded model for hybrid MKNF knowledge bases. In Proceedings of the 18th European Conference on Artificial Intelligence (ECAI’08). M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. Avouris Eds., IOS Press, 99--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Knorr, M., Alferes, J. J., and Hitzler, P. 2011. Local closed world reasoning with description logics under the well-founded semantics. Artif. Intell. 175, 9--10, 1528--1554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Krötzsch, M., Rudolph, S., and Hitzler, P. 2008. ELP: Tractable rules for OWL 2. In Proceedings of the 7th International Semantic Web Conference (ISWC’08). A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin, and K. Thirunarayan Eds., Springer, 649--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Krötzsch, M., Maier, F., Krisnadhi, A. A., and Hitzler, P. 2011. A better uncle for OWL: Nominal schemas for integrating rules and ontologies. In Proceedings of the 20th International World Wide Web Conference (WWW’11). ACM, 645--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lifschitz, V. 1991. Nonmonotonic databases and epistemic queries. In Proceedings of the 12th International Joint Conferences on Artifical Intelligence (IJCAI’91). J. Mylopoulos and R. Reiter Eds., 381--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lloyd, J. W. 1987. Foundations of Logic Programming 2nd Ed., Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lukasiewicz, T. 2010. A novel combination of answer set programming with description logics for the Semantic Web. IEEE Trans. Knowl. Data Eng. 22, 11, 1577--1592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lutz, C., Toman, D., and Wolter, F. 2009. Conjunctive query answering in the description logic el using a relational database system. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09). Morgan Kaufmann, 2070--2075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mei, J., Liu, S., Xie, G. T., Kalyanpur, A., and Fokoue, A. 2009. A practical approach for scalable conjunctive query answering on acyclic EL + knowledge base. In Proceedings of the 8th International Semantic Web Conference (ISWC’09). A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan Eds., Springer, 408--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Motik, B. and Rosati, R. 2007. A faithful integration of description logics with logic programming. In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’07). M. M. Veloso Ed., AAAI Press, 477--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Motik, B. and Rosati, R. 2010. Reconciling description logics and rules. J. ACM 57, 5, 93--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., and Lutz, C. Eds. 2009. Profiles. W3C Recommendation. http://www.w3.org/TR/owl2-profiles/.Google ScholarGoogle Scholar
  30. Patel, C., Cimino, J. J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E., and Srinivas, K. 2007. Matching patient records to clinical trials using ontologies. In Proceedings of the 6th International Semantic Web Conference and 2nd Asian Semantic Web Conference, (ISWC’07 + ASWC’07). K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang, K.-I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and P. Cudré-Mauroux Eds., Springer, 816--829. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pearce, D. and Wagner, G. 1990. Reasoning with negative information I: Strong negation in logic programs. In Language, Knowledge and Intentionality, L. Haaparanta, M. Kusch, and I. Niiniluoto Eds., Acta Philosophica Fennica 49, 430--453.Google ScholarGoogle Scholar
  32. Pereira, L. M. and Alferes, J. J. 1992. Well founded semantics for logic programs with explicit negation. In Proceedings of the 10th European Conference on Artificial Intelligence (ECAI’92). B. Neumann Ed., John Wiley and Sons, 102--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rosati, R. 2007. On conjunctive query answering in EL. In Description Logics 2007, D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, A.-Y. Turhan, and S. Tessaris Eds., CEUR Electronic Workshop Proceedings.Google ScholarGoogle Scholar
  34. Sagonas, K., Swift, T., and Warren, D. S. 2000. The limits of fixed-order computation. Theor. Comput. Sci. 254, 1--2, 465--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Slota, M. and Leite, J. 2010a. On semantic update operators for answer-set programs. In Proceedings of the 19th European Conference on Artificial Intelligence (ECAI’10). H. Coelho, R. Studer, and M. Wooldridge Eds., Frontiers in Artificial Intelligence and Applications, vol. 215, IOS Press, 957--962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Slota, M. and Leite, J. 2010b. Towards closed world reasoning in dynamic open worlds. Theory Pract. Logic Program. 10, 4--6, 547--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Slota, M. and Leite, J. 2011. Back and forth between rules and SE-models. In Proceedings of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11). J. P. Delgrande and W. Faber Eds., Lecture Notes in Computer Science, vol. 6645, Springer, Vancouver, Canada, 174--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Slota, M., Leite, J., and Swift, T. 2011. Splitting and updating hybrid knowledge bases. Theory Pract. Logic Program. 11, 4--5, 801--819.Google ScholarGoogle Scholar
  39. Swift, T. 1999. A new formulation of tabled resolution with delay. In Recent Advances in Artifiial Intelligence, Lecture Notes in Artificial Intelligence, vol. 1695, Springer, 163--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Swift, T., Pinto, A. M., and Pereira, L. M. 2009. Incremental answer completion. In Proceedings of the 25th International Conference on Logic Programming (ICLP’09). P. M. Hill and D. S. Warren Eds., 519--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tarski, A. 1955. Lattice-theoretic fixpoint theorem and its applications. Pacific J. Math. 5, 2, 285--309.Google ScholarGoogle ScholarCross RefCross Ref
  42. van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In Principles of Database Systems. ACM Press, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general logic programs. J. ACM 38, 3, 620--650. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Query-Driven Procedures for Hybrid MKNF Knowledge Bases

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Computational Logic
            ACM Transactions on Computational Logic  Volume 14, Issue 2
            June 2013
            366 pages
            ISSN:1529-3785
            EISSN:1557-945X
            DOI:10.1145/2480759
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 June 2013
            • Accepted: 1 May 2012
            • Revised: 1 December 2011
            • Received: 1 July 2010
            Published in tocl Volume 14, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader