skip to main content
10.1145/2486001.2486004acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free access

FCP: a flexible transport framework for accommodating diversity

Published: 27 August 2013 Publication History

Abstract

Transport protocols must accommodate diverse application and network requirements. As a result, TCP has evolved over time with new congestion control algorithms such as support for generalized AIMD, background flows, and multipath. On the other hand, explicit congestion control algorithms have been shown to be more efficient. However, they are inherently more rigid because they rely on in-network components. Therefore, it is not clear whether they can be made flexible enough to support diverse application requirements. This paper presents a flexible framework for network resource allocation, called FCP, that accommodates diversity by exposing a simple abstraction for resource allocation. FCP incorporates novel primitives for end-point flexibility (aggregation and preloading) into a single framework and makes economics-based congestion control practical by explicitly handling load variations and by decoupling it from actual billing. We show that FCP allows evolution by accommodating diversity and ensuring coexistence, while being as efficient as existing explicit congestion control algorithms.

References

[1]
T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet impasse through virtualization. IEEE Computer, 38, Apr. 2005.
[2]
S. Athuraliya, S. Low, V. Li, and Q. Yin. Rem: active queue management. IEEE Netw., 15(3):48--53, May 2001.
[3]
A. Balachandran et al. A quest for an internet video quality-of-experience metric. In Proc. ACM HotNets, 2012.
[4]
H. Balakrishnan, N. Dukkipati, N. McKeown, and C. Tomlin. Stability analysis of explicit congestion control protocols. IEEE Commun. Lett., 11(10), 2007.
[5]
H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion Management Architecture for Internet Hosts. In Proc. ACM SIGCOMM, Sept. 1999.
[6]
D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In IEEE Infocom, Anchorage, AK, Apr. 2001.
[7]
S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for Differentiated Service. RFC 2475 (Informational), Dec. 1998.
[8]
C. Borchert, D. Lohmann, and O. Spinczyk. CiAO/IP: a highly configurable aspect-oriented IP stack. In Proc. ACM MobiSys, June 2012.
[9]
P. G. Bridges, G. T. Wong, M. Hiltunen, R. D. Schlichting, and M. J. Barrick. A configurable and extensible transport protocol. IEEE ToN, 15(6), Dec. 2007.
[10]
B. Briscoe. Flow rate fairness: dismantling a religion. ACM SIGCOMM CCR, 37(2), Mar. 2007.
[11]
B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder, A. Salvatori, A. Soppera, and M. Koyabe. Policing congestion response in an internetwork using re-feedback. In Proc. ACM SIGCOMM, 2005.
[12]
C. Courcoubetis, V. A. Siris, and G. D. Stamoulis. Integration of pricing and flow control for available bit rate services in ATM networks. In Proc. IEEE GLOBECOM, 1996.
[13]
J. Crowcroft and P. Oechslin. Differentiated end-to-end internet services using a weighted proportional fair sharing TCP. ACM SIGCOMM CCR, 28, 1998.
[14]
D. Damjanovic and M.Welzl. MulTFRC: providing weighted fairness for multimedia applications (and others too!). ACM SIGCOMM CCR, 39, June 2009.
[15]
F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the impact of video quality on user engagement. In Proc. ACM SIGCOMM, 2011.
[16]
N. Dukkipati, M. Kobayashi, R. Zhang-shen, and N. Mckeown. Processor sharing flows in the Internet. In Proc. IWQoS, 2005.
[17]
S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for unicast applications. In Proc. ACM SIGCOMM, 2000.
[18]
S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1, Aug. 1993.
[19]
B. Ford. Structured streams: a new transport abstraction. In Proc. ACM SIGCOMM, 2007.
[20]
A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox. Intelligent design enables architectural evolution. In Proc. ACM HotNets, 2011.
[21]
R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion control. Automatica, pages 1969--1985, 1999.
[22]
S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev., 42, July 2008.
[23]
D. Han, A. Anand, A. Akella, and S. Seshan. RPT: Re-architecting loss protection for content-aware networks. In Proc. 9th USENIX NSDI, Apr. 2012.
[24]
D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W.Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste. XIA: Efficient support for evolvable internetworking. In Proc. USENIX NSDI, 2012.
[25]
D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-Delay Product Networks. In Proc. ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.
[26]
F. Kelly. Charging and rate control for elastic traffic. Eur. Trans. Telecommun., 1997.
[27]
F. Kelly, G. Raina, and T. Voice. Stability and fairness of explicit congestion control with small buffers. ACM SIGCOMM CCR, 2008.
[28]
F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3), 1998.
[29]
E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click modular router. ACM Trans. Comput. Syst., 18(3):263--297, Aug. 2000.
[30]
S. Kunniyur and R. Srikant. End-to-end congestion control schemes: utility functions, random losses and ecn marks. IEEE/ACM ToN, 11(5), 2003.
[31]
A. Lakshmikantha, R. Srikant, N. Dukkipati, N. McKeown, and C. Beck. Buffer sizing results for rcp congestion control under connection arrivals and departures. SIGCOMM Comput. Commun. Rev., 39(1), Dec. 2009.
[32]
A. Li. RTP Payload Format for Generic Forward Error Correction. RFC 5109 (Proposed Standard), Dec. 2007.
[33]
S. H. Low and D. E. Lapsley. Optimization flow control. i. basic algorithm and convergence. IEEE/ACM Trans. Netw., 7(6):861--874, Dec. 1999.
[34]
R. T. Ma, D. M. Chiu, J. C. Lui, V. Misra, and D. Rubenstein. Price differentiation in the kelly mechanism. SIGMETRICS PER, 40(2), Oct. 2012.
[35]
J. K. MacKie-Mason and H. R. Varian. Pricing the internet. Computational Economics 9401002, EconWPA, Jan. 1994.
[36]
L. Massoulié and J. Roberts. Bandwidth sharing: objectives and algorithms. IEEE/ACM Trans. Netw., 10(3):320--328, June 2002.
[37]
P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart. SCTP: an innovative transport layer protocol for the web. In Proc. World Wide Web, 2006.
[38]
A. Odlyzko. Paris metro pricing: The minimalist differentiated services solution. In Proc. IWQoS, 1999.
[39]
P. Patel, A. Whitaker, D.Wetherall, J. Lepreau, and T. Stack. Upgrading transport protocols using untrusted mobile code. In Proc. ACM SOSP, 2003.
[40]
L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica. Faircloud: sharing the network in cloud computing. In Proc. ACM SIGCOMM, 2012.
[41]
B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C. Snoeren. Cloud control with distributed rate limiting. In Proc. ACM SIGCOMM, 2007.
[42]
S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: reshaping the research agenda. ACM SIGCOMM CCR, 26(2), Apr. 1996.
[43]
R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar. Can the production network be the testbed? In Proc. 9th USENIX OSDI, Vancouver, Canada, Oct. 2010.
[44]
A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the data center network. In Proc. 8th USENIX NSDI, 2011.
[45]
I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: achieving approximately fair bandwidth allocations in high speed networks. In Proc. ACM SIGCOMM, 1998.
[46]
L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: An overlay based architecture for enhancing Internet QoS. In Proc. 1st USENIX NSDI, San Francisco, CA, Mar. 2004.
[47]
B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.
[48]
A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: a mechanism for background transfers. SIGOPS Oper. Syst. Rev., 36, Dec. 2002.
[49]
C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: meeting deadlines in datacenter networks. In Proc. ACM SIGCOMM, 2011.
[50]
D.Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation and evaluation of congestion control for multipath TCP. In Proc. 8th USENIX NSDI, Boston, MA, Apr. 2011.
[51]
Y. Yang and S. Lam. General aimd congestion control. In Proc. ICNP, 2000.
[52]
Y. Yi and M. Chiang. Stochastic network utility maximisation - a tribute to kelly's paper published in this journal a decade ago. European Transactions on Telecommunications, 19(4):421--442, 2008.

Cited By

View all
  • (2022)Congestion Control for Cross-Datacenter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2022.316158030:5(2074-2089)Online publication date: Oct-2022
  • (2022)Two Families of Optimal Multipath Congestion Control Protocols2022 IEEE 30th International Conference on Network Protocols (ICNP)10.1109/ICNP55882.2022.9940376(1-11)Online publication date: 30-Oct-2022
  • (2021)Hop-By-Hop: Advancing Cooperative Congestion Control for Cyber-Physical Systems2021 IEEE 46th Conference on Local Computer Networks (LCN)10.1109/LCN52139.2021.9524887(511-518)Online publication date: 4-Oct-2021
  • Show More Cited By

Index Terms

  1. FCP: a flexible transport framework for accommodating diversity

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGCOMM '13: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM
      August 2013
      580 pages
      ISBN:9781450320566
      DOI:10.1145/2486001
      • cover image ACM SIGCOMM Computer Communication Review
        ACM SIGCOMM Computer Communication Review  Volume 43, Issue 4
        October 2013
        595 pages
        ISSN:0146-4833
        DOI:10.1145/2534169
        Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 August 2013

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. congestion control
      2. end-point flexibility
      3. transport protocol

      Qualifiers

      • Research-article

      Conference

      SIGCOMM'13
      Sponsor:
      SIGCOMM'13: ACM SIGCOMM 2013 Conference
      August 12 - 16, 2013
      Hong Kong, China

      Acceptance Rates

      SIGCOMM '13 Paper Acceptance Rate 38 of 246 submissions, 15%;
      Overall Acceptance Rate 462 of 3,389 submissions, 14%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)127
      • Downloads (Last 6 weeks)13
      Reflects downloads up to 20 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Congestion Control for Cross-Datacenter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2022.316158030:5(2074-2089)Online publication date: Oct-2022
      • (2022)Two Families of Optimal Multipath Congestion Control Protocols2022 IEEE 30th International Conference on Network Protocols (ICNP)10.1109/ICNP55882.2022.9940376(1-11)Online publication date: 30-Oct-2022
      • (2021)Hop-By-Hop: Advancing Cooperative Congestion Control for Cyber-Physical Systems2021 IEEE 46th Conference on Local Computer Networks (LCN)10.1109/LCN52139.2021.9524887(511-518)Online publication date: 4-Oct-2021
      • (2020)PINTProceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication10.1145/3387514.3405894(662-680)Online publication date: 30-Jul-2020
      • (2018)CopaProceedings of the 15th USENIX Conference on Networked Systems Design and Implementation10.5555/3307441.3307470(329-342)Online publication date: 9-Apr-2018
      • (2017)Combining ECN and RTT for Datacenter TransportProceedings of the First Asia-Pacific Workshop on Networking10.1145/3106989.3107002(36-42)Online publication date: 3-Aug-2017
      • (2017)Credit-Scheduled Delay-Bounded Congestion Control for DatacentersProceedings of the Conference of the ACM Special Interest Group on Data Communication10.1145/3098822.3098840(239-252)Online publication date: 7-Aug-2017
      • (2017)DXIEEE/ACM Transactions on Networking10.1109/TNET.2016.258728625:1(335-348)Online publication date: 1-Feb-2017
      • (2016)ExpeditusProceedings of the Seventh ACM Symposium on Cloud Computing10.1145/2987550.2987560(442-455)Online publication date: 5-Oct-2016
      • (2016)Scheduling Mix-flows in Commodity Datacenters with KarunaProceedings of the 2016 ACM SIGCOMM Conference10.1145/2934872.2934888(174-187)Online publication date: 22-Aug-2016
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media