skip to main content
research-article

pFabric: minimal near-optimal datacenter transport

Published: 27 August 2013 Publication History

Abstract

In this paper we present pFabric, a minimalistic datacenter transport design that provides near theoretically optimal flow completion times even at the 99th percentile for short flows, while still minimizing average flow completion time for long flows. Moreover, pFabric delivers this performance with a very simple design that is based on a key conceptual insight: datacenter transport should decouple flow scheduling from rate control. For flow scheduling, packets carry a single priority number set independently by each flow; switches have very small buffers and implement a very simple priority-based scheduling/dropping mechanism. Rate control is also correspondingly simpler; flows start at line rate and throttle back only under high and persistent packet loss. We provide theoretical intuition and show via extensive simulations that the combination of these two simple mechanisms is sufficient to provide near-optimal performance.

References

[1]
M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In Proc. of SIGCOMM, 2008.
[2]
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: dynamic flow scheduling for data center networks. In Proc. of NSDI, 2010.
[3]
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. of SIGCOMM, 2010.
[4]
M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more: trading a little bandwidth for ultra-low latency in the data center. In Proc. of NSDI, 2012.
[5]
M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. Deconstructing datacenter packet transport. In Proc. of HotNets, 2012.
[6]
M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: Minimal Near-Optimal Datacenter Transport. http://simula.stanford.edu/ alizade/pfabric-techreport.pdf.
[7]
B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis of a large-scale key-value store. In Proc. of SIGMETRICS, 2012.
[8]
N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: investigating unfairness. In Proc. of SIGMETRICS, 2001.
[9]
A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum multicoloring of graphs. J. Algorithms, 2000.
[10]
T. Bonald and L. Massoulié. Impact of fairness on Internet performance. In Proc. of SIGMETRICS, 2001.
[11]
A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the Impact of Packet Spraying in Data Center Networks. In Proc. of INFOCOM, 2013.
[12]
A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible data center network. In Proc. of SIGCOMM, 2009.
[13]
D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals of Queueing Theory. Wiley-Interscience, New York, NY, USA, 4th edition, 2008.
[14]
C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive Scheduling. In Proc. of SIGCOMM, 2012.
[15]
The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.
[16]
J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman. The case for RAMCloud. Commun. ACM, 2011.
[17]
C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving datacenter performance and robustness with multipath TCP. In Proc. of the SIGCOMM, 2011.
[18]
B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacenter TCP (D2TCP). In Proc. of SIGCOMM, 2012.
[19]
V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-grained TCP retransmissions for datacenter communication. In Proc. of SIGCOMM, 2009.
[20]
M. Verloop, S. Borst, and R. Núnez Queija. Stability of size-based scheduling disciplines in resource-sharing networks. Perform. Eval., 62(1--4), 2005.
[21]
C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: meeting deadlines in datacenter networks. In Proc. of SIGCOMM, 2011.
[22]
D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz. DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks. In Proc. of SIGCOMM, 2012.

Cited By

View all
  • (2025)DiffECN: Differential ECN Marking for Datacenter NetworksIEEE Transactions on Networking10.1109/TNET.2024.347751133:1(210-225)Online publication date: Feb-2025
  • (2024)When will my ML job finish? toward providing completion time estimates through predictability-centric schedulingProceedings of the 18th USENIX Conference on Operating Systems Design and Implementation10.5555/3691938.3691964(487-505)Online publication date: 10-Jul-2024
  • (2024)Flow scheduling with imprecise knowledgeProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691831(95-111)Online publication date: 16-Apr-2024
  • Show More Cited By

Index Terms

  1. pFabric: minimal near-optimal datacenter transport

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGCOMM Computer Communication Review
    ACM SIGCOMM Computer Communication Review  Volume 43, Issue 4
    October 2013
    595 pages
    ISSN:0146-4833
    DOI:10.1145/2534169
    Issue’s Table of Contents
    • cover image ACM Conferences
      SIGCOMM '13: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM
      August 2013
      580 pages
      ISBN:9781450320566
      DOI:10.1145/2486001
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 August 2013
    Published in SIGCOMM-CCR Volume 43, Issue 4

    Check for updates

    Author Tags

    1. datacenter network
    2. flow scheduling
    3. packet transport

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)447
    • Downloads (Last 6 weeks)46
    Reflects downloads up to 20 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)DiffECN: Differential ECN Marking for Datacenter NetworksIEEE Transactions on Networking10.1109/TNET.2024.347751133:1(210-225)Online publication date: Feb-2025
    • (2024)When will my ML job finish? toward providing completion time estimates through predictability-centric schedulingProceedings of the 18th USENIX Conference on Operating Systems Design and Implementation10.5555/3691938.3691964(487-505)Online publication date: 10-Jul-2024
    • (2024)Flow scheduling with imprecise knowledgeProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691831(95-111)Online publication date: 16-Apr-2024
    • (2024)Congestion Control Mechanism Based on Backpressure Feedback in Data Center NetworksFuture Internet10.3390/fi1604013116:4(131)Online publication date: 15-Apr-2024
    • (2024)Practical Heavy-Hitter Detection Algorithms for Programmable Switches2024 IFIP Networking Conference (IFIP Networking)10.23919/IFIPNetworking62109.2024.10619799(377-385)Online publication date: 3-Jun-2024
    • (2024)ACC: agile congestion control in datacenter networksSCIENTIA SINICA Informationis10.1360/SSI-2024-018455:1(46)Online publication date: 31-Dec-2024
    • (2024)Semi-Oblivious Reconfigurable Datacenter NetworksProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696860(150-158)Online publication date: 18-Nov-2024
    • (2024)Impossibility Results for Data-Center Routing with Congestion Control and Unsplittable FlowsProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662777(358-368)Online publication date: 17-Jun-2024
    • (2024)FIGRET: Fine-Grained Robustness-Enhanced Traffic EngineeringProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672258(117-135)Online publication date: 4-Aug-2024
    • (2024)Taming the Elephants: Affordable Flow Length Prediction in the Data PlaneProceedings of the ACM on Networking10.1145/36494732:CoNEXT1(1-24)Online publication date: 28-Mar-2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media