skip to main content
10.1145/2487166.2487176acmconferencesArticle/Chapter ViewAbstractPublication Pagese-energyConference Proceedingsconference-collections
research-article

Computational environmental ethnography: combining collective sensing and ethnographic inquiries to advance means for reducing environmental footprints

Published:21 May 2013Publication History

ABSTRACT

We lack an understanding of human values, motivations and behavior in regards to new means for changing people's behavior towards more sustainable choices in their everyday life. Previous anthropological and sociological studies have identified these objects of study to be quite complex and to require new methods to be unfolded further. Especially behavior within the privacy of people's homes has proven challenging to uncover through the use of traditional qualitative and quantitative social scientific methods (e.g. interviews, participatory observations and questionnaires). Furthermore, many research experiments are attempting to motivate environmental improvements through feedback via, e.g., room displays, web pages or smart phones, based on (smart) metering of energy usage, or for saving energy by automatic control of, e.g., heating, lighting or appliances. However, existing evaluation methods are primarily unilateral by opting for either a quantitative or a qualitative method or for a simple combination and therefore do not provide detailed insight into the potentials and impacts of such solutions. This paper therefore proposes a combined quantitative and qualitative collective sensing and anthropologic investigation methodology we term Computational Environmental Ethnography, which provides quantitative sensing data that document behavior while facilitating qualitative investigations to link the data to explanations and ideas for further sensing. We propose this methodology to include the establishment of base lines, comparative experimental feedback, traceable sensor data with respect for different privacy levels, visualization of sensor data, qualitative explanations of recurrent and exceptional patterns in sensor data, taking place as part of an innovative process and in an iterative interplay among complementing disciplines, potentially including also partners from industry. Experiences from using the methodology in a zero-emission home setting, as well as an ongoing case investigating transportation habits are discussed.

References

  1. O. Bates, A. K. Clear, A. Friday, M. Hazas, J. Morley: Accounting for Energy-Reliant Services within Everyday Life at Home. In Pervasive 2012: 107--124 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Froehlich, E.C. Larson, S. Gupta, G. Cohn, M. S. Reynolds, S. Patel: Disaggregated End-Use Energy Sensing for the Smart Grid. IEEE Pervasive Computing 10(1): 28--39 (2011) Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. H. Hansen, E.Howard, R. West, P. Boda: PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. MobiSys 2009: 55--68 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Froehlich, T. Dillahunt, P. V. Klasnja, J. Mankoff, S. Consolvo, B. L. Harrison, J. A. Landay: UbiGreen: investigating a mobile tool for tracking and supporting green transportation habits. In CHI 2009: 1043--1052 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. J. Bernheim Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, C. Dixon: Home automation in the wild: challenges and opportunities. In CHI 2011: 2115--2124 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Costanza, E., Ramchurn, S. D. and Jennings, N. R. (2012) Understanding domestic energy consumption through interactive visualisation: a field study. In Ubicomp 2012: 216--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Erickson, M. Podlaseck, S. Sahu, J. Dai, T. Chao, M. R. Naphade: The dubuque water portal: evaluation of the uptake, use and impact of residential water consumption feedback. CHI 2012: 675--684 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Kjeldskov, M. B. Skov, J. Paay, R. Pathmanathan: Using mobile phones to support sustainability: a field study of residential electricity consumption. In CHI 2012: 2347--2356 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Reddy, M. Mun, J.Burke, D. Estrin, M. H. Hansen, M. B. Srivastava: Using mobile phones to determine transportation modes. TOSN 6(2) (2010) Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Kuznetsov, E. Paulos, UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays. In CHI 2010 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. K. Barker, A. K. Mishra, D. E. Irwin, P. J. Shenoy, J. R. Albrecht: SmartCap: Flattening peak electricity demand in smart homes. In PerCom 2012: 67--75Google ScholarGoogle Scholar
  12. J. Scott, A. J. B. Brush, J. Krumm, B. Meyers, M. Hazas, P. Hodges, N. Villar: PreHeat: controlling home heating using occupancy prediction. In Ubicomp 2011: 281--290 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Lu, T. I. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. A. Stankovic, E. Field, K. Whitehouse: The smart thermostat: using occupancy sensors to save energy in homes. In SenSys 2010: 211--224 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. A. P. Rahayu, B. Narayanaswamy, S.Krishnaswamy, C. Labbé, D. P. Seetharam: Learning to be energy-wise: discriminative methods for load disaggregation. In e-Energy 2012: 10 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Srikantha, C. Rosenberg, S. Keshav: An analysis of peak demand reductions due to elasticity of domestic appliances. In e-Energy 2012: 28 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Kim, H. Park, M. B. Srivastava: A longitudinal study of vibration-based water flow sensing. TOSN 9(1): 8 (2012) Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Aswani, N. Master, J. Taneja, D. E. Culler, C. Tomlin: Reducing Transient and Steady State Electricity Consumption in HVAC Using Learning-Based Model-Predictive Control. In IEEE 100(1): 240--253 (2012)Google ScholarGoogle Scholar
  18. European Commission, Leading global action to 2020 and beyond, 2009, Visited January 2013, http://ec.europa.eu/ clima/publications/docs/post_2012_en.pdfGoogle ScholarGoogle Scholar
  19. M. Hazas, A. J. Bernheim Brush, and J. Scott, Sustainability does not begin with the individual. Interactions, 19 (5): 14--17 (2012) Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Froehlich, L. Findlater, J. A. Landay: The design of eco-feedback technology. In CHI 2010: 1999--2008 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Stern, E.. What shapes European Evaluation? Evaluation 10(1) (2004)Google ScholarGoogle Scholar
  22. C. Geertz. The interpretation of cultures: selected essays. New York: Basic Books, pp. 3--30 (1973)Google ScholarGoogle Scholar
  23. Entwistle, J. Mose and Søndergaard, A. The Montage Workshop - the Recreation of Realization. In EPIC 2009Google ScholarGoogle Scholar
  24. Building Energy Assessment Tool -- Be06, http://www.sbi.dk/be06, visited 2012Google ScholarGoogle Scholar
  25. Entwistle, J. M. (2009) Energy Consumption in the Home Alexandra Institute 2009, www.alexandra.dkGoogle ScholarGoogle Scholar
  26. Kollmuss, A. and Agyeman, J. "Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior", Environmental Education Research, 8(3): 239--260 (2002)Google ScholarGoogle ScholarCross RefCross Ref
  27. Darby, S.. The Effectiveness Of Feedback On Energy Consumption. Tech Report from the Environmental Change Institute, University of Oxford, UK (2006)Google ScholarGoogle Scholar
  28. T. L. Tudor, S. W. Barr, and A. W. Gilg. A Novel Conceptual Framework for Examining Environmental Behavior in Large Organizations: A Case Study of the Cornwall National Health Service (NHS) in the United Kingdom. Environment and Behavior. 40: 426--450 (2008)Google ScholarGoogle ScholarCross RefCross Ref
  29. M. B. Kjærgaard, M. Wirz, D. Roggen, and G. Tröster. Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones. In UbiComp 2012. ACM, 240--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Froehlich, J., M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay. "MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones." In MobiSys 2007: 57--70 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Andersen, M. S., and M. B. Kjærgaard. Towards a New Classification of Location Privacy Methods in Pervasive Computing. In Mobiquitous 2012: 150--161.Google ScholarGoogle Scholar
  32. A. Oulasvirta, A. Pihlajamaa, J. Perkiö, D. Ray, T. Vähäkangas, T. Hasu, N. Vainio, P. Myllymäki. Long-term Effects of Ubiquitous Surveillance in the Home. Ubicomp 2012 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Barth, F, "Socialantropologien som Grunnvitenskap" København. Folkeuniversitet: 4--5 (1980) {In Danish}Google ScholarGoogle Scholar
  34. Emerson, R. M, Fretz, R. I, Shaw, L. L. Writing Ethnographic Fieldnotes. University of Chicago Press (1995)Google ScholarGoogle Scholar
  35. O., Ton. Informed participation and participating informants. Canberra Anthropology 20(1--2): 96--108 (1997)Google ScholarGoogle Scholar
  36. Baarts, C. Håndværket. Opbygning af viden. In Hastrup, K (Red) En grundbog I antropologisk metode. Hans Reitzels Folag. 35--50 (2003)Google ScholarGoogle Scholar
  37. Rosaldo, R. Grief and the Headhunters Rage (1984)Google ScholarGoogle Scholar
  38. Wadel, C. Feltarbeid i egen kultur-en innføring i kvalitativt orienter samfunnsforskning, Flekkefjord (1991) {In Danish}Google ScholarGoogle Scholar
  39. Kvale, S. En Introduktion til det Kvalitative Forskningsinterview. Munksgaard (1996) {In Danish}Google ScholarGoogle Scholar
  40. Shove E. Comfort, cleanliness and convenience: the social organisation of normality. Berg (2003)Google ScholarGoogle Scholar
  41. Bartiaux, F. Does environmental information overcome practice compartmentalisation and change consumers behaviours? Journal of Cleaner Production 16 (2008)Google ScholarGoogle Scholar
  42. Gram-Hanssen, K.. Different Everyday Lives -- Different Patterns of Electricity Use. American Council for an Energy Efficient Economy 2004: 1--13Google ScholarGoogle Scholar
  43. Gram-Hanssen, K. Teenage Consumption of cleanliness: how to make it sustainable. Sustainability: Science, Practice & Policy 3(2): 15--23 (2007)Google ScholarGoogle Scholar
  44. Stern, P. C. Toward a Coherent Theory of Environmentally Significant Behavior. Journal of Social Issues 56(3): 407--424 (2000)Google ScholarGoogle ScholarCross RefCross Ref
  45. Lutzenhiser, L. A Cultural Model of Household Energy Consumption. Energy 17(1):47--60 (1992)Google ScholarGoogle ScholarCross RefCross Ref
  46. Hargreaves, T.. Making Pro-Environmental Behaviour Work: An Ethnographic Case Study of Practice, Process and Power in the Workplace. PhD Thesis, (2008)Google ScholarGoogle Scholar
  47. Galtung, L. and Dinesen, M...Innovativ Evaluering og Observation. CEPRA striben (2013) {In Danish}Google ScholarGoogle Scholar
  48. Gulløv, E. & Højlund, S. Feltarbejde blandt Børn. Metodologi og etik I etnografisk børneforskning? København. Gyldendal (2010) {In Danish}Google ScholarGoogle Scholar
  49. McDermott, R. P. The acquisition of a child by learning disability. In Understanding Practice. Perspectives on activity and context (1996)Google ScholarGoogle Scholar
  50. Winett, R. A.; Kagel, J. H.; Battalio, R. C.; Winkler, R. C. Effects of monetary rebates, feedback, and information on residential electricity conservation. Journal of Applied Psychology 63(1): 73--80 (1978)Google ScholarGoogle ScholarCross RefCross Ref
  51. Eun Kyoung Choe, Sunny Consolvo, Jaeyeon Jung, Beverly Harrison, Shwetak N. Patel, and Julie A. Kientz. Investigating receptiveness to sensing and inference in the home using sensor proxies. In UbiComp 2012. ACM, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Spradley, J. Participant Observation. Wadsworth Thomson Learning (1997)Google ScholarGoogle Scholar
  53. Gram-Hanssen, Kirsten. Standby Consumption in Households Analyzed With a Practice Theory Approach. Journal of industrial Ecology. Yale (2009)Google ScholarGoogle Scholar
  54. Transportation emission statistics for OECD http://www.internationaltransportforum.org/jtrc/environment/CO2/OECD.pdf, Visited Jan 2013.Google ScholarGoogle Scholar

Index Terms

  1. Computational environmental ethnography: combining collective sensing and ethnographic inquiries to advance means for reducing environmental footprints

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      e-Energy '13: Proceedings of the fourth international conference on Future energy systems
      January 2013
      306 pages
      ISBN:9781450320528
      DOI:10.1145/2487166

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 May 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      e-Energy '13 Paper Acceptance Rate40of76submissions,53%Overall Acceptance Rate160of446submissions,36%

      Upcoming Conference

      E-Energy '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader