skip to main content
10.1145/2488608.2488728acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

The orbit problem in higher dimensions

Published:01 June 2013Publication History

ABSTRACT

We consider higher-dimensional versions of Kannan and Lipton's Orbit Problem---determining whether a target vector space V may be reached from a starting point x under repeated applications of a linear transformation A. Answering two questions posed by Kannan and Lipton in the 1980s, we show that when V has dimension one, this problem is solvable in polynomial time, and when V has dimension two or three, the problem is in NPRP.

References

  1. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of numerical analysis. SIAM J. Comput., 38(5):1987--2006, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. V. Arvind and T. Vijayaraghavan. The orbit problem is in the GapL hierarchy. J. Comb. Optim., 21(1):124--137, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Baker and G. Wüstholz. Logarithmic forms and group varieties. Jour. Reine Angew. Math., 442:19--62, 1993.Google ScholarGoogle Scholar
  4. A. M. Ben-Amram, S. Genaim, and A. N. Masud. On the termination of integer loops. ACM Trans. Program. Lang. Syst., 34(4):16, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Berstel and M. Mignotte. Deux propriétés décidables des suites récurrentes linéaires. Bulletin de la Société Mathématique de France, 104, 1976.Google ScholarGoogle Scholar
  6. P. Blanksby and H. Montgomery. Algebraic integers near the unit circle. Acta Arith., pages 355--369, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  7. V. Blondel and N. Portier. The presence of a zero in an integer linear recurrent sequence is NP-hard to decide. Linear Algebra and Its Applications, 2002.Google ScholarGoogle Scholar
  8. M. Braverman. Termination of integer linear programs. In CAV, volume 4144 of Lecture Notes in Computer Science, pages 372--385. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y. Bugeaud. Linear forms in p-adic logarithms and the diophantine equation (x^n - 1)/(x - 1) = y^q. Math. Proc. Cambridge Phil. Soc., 127:373--381, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  10. J.-Y. Cai. Computing Jordan normal forms exactly for commuting matrices in polynomial time. Int. J. Found. Comput. Sci., 5(3/4):293--302, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  11. V. Chonev, J. Ouaknine, and J. Worrell. The Orbit Problem in higher dimensions (long version). CoRR, arXiv:1303.2981, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Hainry. Reachability in linear dynamical systems. In CiE, volume 5028 of Lecture Notes in Computer Science, pages 241--250. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. V. Halava, T. Harju, M. Hirvensalo, and J. Karhumaki. Skolem's problem -- on the border between decidability and undecidability. TUCS Technical Report, (683), 2005.Google ScholarGoogle Scholar
  15. P. Halmos. Finite-Dimensional Vector Spaces. Springer, 1974.Google ScholarGoogle ScholarCross RefCross Ref
  16. G. Hansel. Une démonstration simple du théorème de Skolem-Mahler-Lech. Theoretical Computer Science, 43:91 -- 98, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Harrison. Lectures on sequential machines. Academic Press, Orlando, 1969. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Hirvensalo, J. Karhumaki, and A. Rabinovich. Computing partial information out of intractable: Powers of algebraic numbers as an example. Journal of Number Theory, 130:232--253, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Kannan and R. J. Lipton. The orbit problem is decidable. In Proceedings of the twelfth annual ACM symposium on Theory of computing, STOC '80, pages 252--261, New York, NY, USA, 1980. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. J. ACM, 33(4):808--821, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. Lech. A note on recurring series. Arkiv för Matematik, 2:417--421, 1953.Google ScholarGoogle Scholar
  22. K. Mahler. Eine arithmetische Eigenschaft der Taylor-Koeffizienten rationaler Funktionen. Proc. Akad. Wet. Amsterdam, 38:51--60, 1935.Google ScholarGoogle Scholar
  23. M. Mignotte. Some useful bounds. Computer Algebra, pages 259--263, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Mignotte, T. Shorey, and R. Tijdeman. The distance between terms of an algebraic recurrence sequence. Jour. Reine Angew. Math., 349:63 -- 76, 1984.Google ScholarGoogle Scholar
  25. J. Ouaknine and J. Worrell. Decision problems for linear recurrence sequences. In RP, volume 7550 of Lecture Notes in Computer Science, pages 21--28, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. V. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Computers & Mathematics with Applications, 31(12):97 -- 138, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Schönhage. On the power of random access machines. In H. Maurer, editor, Automata, Languages and Programming, volume 71 of Lecture Notes in Computer Science, pages 520--529. Springer, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Skolem. Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. Skand. Mat. Kongr., 8:163--188, 1934.Google ScholarGoogle Scholar
  29. S. P. Tarasov and M. N. Vyalyi. Orbits of linear maps and regular languages. CoRR, arXiv:1011.1842, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Tijdeman. Some applications of diophantine approximation. Number Theory for the Millennium III, pages 261--284, 2002.Google ScholarGoogle Scholar
  31. A. Tiwari. Termination of linear programs. In CAV, volume 3114 of Lecture Notes in Computer Science, pages 70--82. Springer, 2004.Google ScholarGoogle Scholar
  32. A. J. van der Poorten. Linear forms in logarithms in the p-adic case. Transcendence Theory: Advances and Applications, pages 29--57, 1977.Google ScholarGoogle Scholar
  33. N. Vereshchagin. Occurrence of zero in a linear recursive sequence. Mathematical Notes, 38:609--615, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  34. J.-Yi Cai, R. J. Lipton, and Y. Zalcstein. The complexity of the A B C problem. SIAM J. Comput., 29(6):1878--1888, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The orbit problem in higher dimensions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
        June 2013
        998 pages
        ISBN:9781450320290
        DOI:10.1145/2488608

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 June 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        STOC '13 Paper Acceptance Rate100of360submissions,28%Overall Acceptance Rate1,469of4,586submissions,32%

        Upcoming Conference

        STOC '24
        56th Annual ACM Symposium on Theory of Computing (STOC 2024)
        June 24 - 28, 2024
        Vancouver , BC , Canada

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader