skip to main content
10.1145/2503210.2503300acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Physics-based seismic hazard analysis on petascale heterogeneous supercomputers

Published:17 November 2013Publication History

ABSTRACT

We have developed a highly scalable and efficient GPU-based finite-difference code (AWP) for earthquake simulation that implements high throughput, memory locality, communication reduction and communication/computation overlap and achieves linear scalability on Cray XK7 Titan at ORNL and NCSA's Blue Waters system. We simulate realistic 0-10 Hz earthquake ground motions relevant to building engineering design using high-performance AWP. Moreover, we show that AWP provides a speedup by a factor of 110 in key strain tensor calculations critical to probabilistic seismic hazard analysis (PSHA). These performance improvements to critical scientific application software, coupled with improved co-scheduling capabilities of our workflow-managed systems, make a statewide hazard model a goal reachable with existing supercomputers. The performance improvements of GPU-based AWP are expected to save millions of core-hours over the next few years as physics-based seismic hazard analysis is developed using heterogeneous petascale supercomputers.

References

  1. Bielak, J., Graves, R., Olsen, K. B., Taborda, R., Ramirez-Guzman, L., Day, S., Ely, G., Roten, D., Jordan, T., Maechling, P., Urbanic, J., Cui, Y. and Juve, G. 2010. The ShakeOut earthquake scenario: Verification of three simulation sets. Geophysical Journal International., 180, 1 (Jan. 2010), 375--404.Google ScholarGoogle ScholarCross RefCross Ref
  2. Blanch, J. O., Robertsson, J. O. and Symes, W. W. 1995. Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics, 60, 1, 176--184.Google ScholarGoogle ScholarCross RefCross Ref
  3. Callaghan, S., Deelman, E., Gunter, D., Juve, G., Maechling, P., Brooks, C., Vahi, K., Milner, K., Graves, R., Field, E., Okaya, D. and Jordan, T. 2010. Scaling up workflow-based applications. Journal of Computer and System Sciences, 76, 6 (Sep. 2010), 428--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50, 4, 705--708.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chen, P., Jordan, T. H. and Zhao, L. 2007. Full three-dimensional tomography: a comparison between the scattering- integral and adjoint-wavefield methods. Geophysical Journal International., 170, 1, 175--181.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, P., Zhao, L. and Jordan, T. H. 2007, Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97, 4, 1094--1120.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cui, Y., Olsen, K. B., Jordan, T. H., Lee, K., Zhou, J., Small, P., Roten, D., Ely, G., Panda, D. K., Chourasia, A., Levesque, J., Day, S. M. and Maechling, P. 2010. Scalable earthquake simulation on petascale supercomputers. Proc. of Int'l. Conf. for High Performance Computing, Networking, Storage and Analysis (SC'10, New Orleans, November 2010), 1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dalguer, L. A. and Day, S. M. 2007. Staggered-grid split-node method for spontaneous rupture simulation. Journal of Geophysical Research: Solid Earth, 112, B02302. doi:10.1029/2006JB004467.Google ScholarGoogle ScholarCross RefCross Ref
  9. Day, S. M. 1998. Efficient simulation of constant Q using coarse-grained memory variables. Bulletin of the Seismological Society of America, 88, 4, 1051--1062.Google ScholarGoogle Scholar
  10. Day, S. M. and Bradley, C. R. 2001. Memory-efficient simulation of anelastic wave propagation. Bulletin of the Seismological Society of America, 91, 3, 520--531.Google ScholarGoogle ScholarCross RefCross Ref
  11. Field, E. H., Dawson, T. E., Felzer, K. R., Frankel, A. D., Gupta, V., Jordan, T. H., Parsons, T., Petersen, M. D., Stein, R. S., Weldon II, R. J. and Wills, C. J. 2009. Uniform california earthquake rupture forecast, version 2 (UCERF 2). Bulletin of the Seismological Society of America, vol. 99, no. 4 (Aug. 2009), 2053--2107.Google ScholarGoogle Scholar
  12. Field, E. H., Jordan, T. H. and Cornell, C. A. 2003. OpenSHA: A developing community-modeling environment for seismic hazard analysis. Seismological Research Letters, 74, 4, 406--419.Google ScholarGoogle ScholarCross RefCross Ref
  13. Georgia Tech 2013. Keeneland User Guide. {Online}. https://www.xsede.org/gatech-keeneland.Google ScholarGoogle Scholar
  14. Graves, R. W. 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86, 4, 1091--1106.Google ScholarGoogle Scholar
  15. Graves, R. W. and Pitarka, A. 2010. Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100, 5A, 2095--2123.Google ScholarGoogle ScholarCross RefCross Ref
  16. Graves, R., Aagaard, B., Hudnut, K., Star, L., Stewart, J. and Jordan, T. H. 2008. Broadband simulations for Mw 7.8 southern San Andreas earthquakes: ground motion sensitivity to rupture speed. Geophysical Research Letters, 35, L22302 (Nov. 2008), doi:10.1029/2008GL035750, 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  17. Graves, R., Jordan, T. H., Callaghan, S. Deelman, E., Field, E., Juve, G., Kesselman, C., Maechling, P. Mehta, G., Milner, K., Okaya, D., Small, P. and Vahi, K. 2011. CyberShake: A physics-based seismic hazard model for southern california. Pure and Applied Geophysics, vol. 168, no. 3 (Mar. 2011), 367--381.Google ScholarGoogle Scholar
  18. Mai, P. M., Imperatori, W. and Olsen, K. B. 2010. Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering. Bulletin of the Seismological Society of America, 100, 5A, 2124--2142.Google ScholarGoogle ScholarCross RefCross Ref
  19. National Research Council 2011. National earthquake resilience: Research, implementation, and outreach. National Academies Press, 198.Google ScholarGoogle Scholar
  20. Oak Ridge Leadership Computing Facility 2013. Titan User Guide. {Online}. https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide.Google ScholarGoogle Scholar
  21. Olsen, K. B. 1994. Simulation of three-dimensional wave propagation in the Salt Lake basin. University of Utah, Doctoral dissertation.Google ScholarGoogle Scholar
  22. Olsen, K. B., Day, S. M., Minster, J. B., Cui, Y., Chourasia, A., Faerman, M., Moore, R., Maechling, P. and Jordan, T. H. 2006. Strong shaking in Los Angeles expected from southern San Andreas earthquake, Geophysical Research Letters, 33, 7 (Apr. 2006).Google ScholarGoogle ScholarCross RefCross Ref
  23. Olsen, K. B., Day, S. M., Minster, J. B., Cui, Y., Chourasia, Okaya, D., Maechling, P. and Jordan, T. H. 2008. TeraShake2: spontaneous rupture simulations of mw 7.7 earthquakes on the southern San Andreas fault. Bulletin of the Seismological Society of America, vol. 98, no. 3, (Jun. 2008), 1162--1185.Google ScholarGoogle Scholar
  24. Porter, K., Hudnut, K., Perry, S., Reichle, M., Scawthorn, C. and Wein, A. 2011. Forward to the special issue on ShakeOut. Earthquake Spectra, 27, 2, 235--237.Google ScholarGoogle ScholarCross RefCross Ref
  25. Schmedes, J., Archuleta, R. J. and Lavallée, D. 2010. Correlation of earthquake source parameters inferred from dynamic rupture simulations. Journal of Geophysical Research: Solid Earth, 115, B3.Google ScholarGoogle Scholar
  26. Shi, Z. and Day, S. M. 2013. Rupture dynamics and ground motion from 3-D rough-fault simulations. Journal of Geophysical research, 118, 1--20.Google ScholarGoogle Scholar
  27. Southern California Earthquake Center. 2013. ShakeOut. {Online}. http://shakeout.org.Google ScholarGoogle Scholar
  28. Taborda, R. and Bielak, J. 2013. Ground-motion simulation and validation of the 2008 Chino Hills. Bulletin of the Seismological Society of America, 103, 131--156.Google ScholarGoogle ScholarCross RefCross Ref
  29. Tape, C., Liu, Q., Maggi, A. and Tromp, J. 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International., 180, 1, 433--462.Google ScholarGoogle ScholarCross RefCross Ref
  30. University of Illinois NCSA 2013. Blue Waters System Overview. {Online}. https://bluewaters.ncsa.illinois.edu/user-guide.Google ScholarGoogle Scholar
  31. Wald, D. J. and Graves R. W. 2001. Resolution analysis of finite fault source inversion using one-and three-dimensional Green's functions: 2. Combining seismic and geodetic data. Journal of Geophysical Research, 106.Google ScholarGoogle ScholarCross RefCross Ref
  32. Zhao, L., Chen, P. and. Jordan, T. H. 2006. Strain Green's tensors, reciprocity, and their applications to seismic source and structure studies. Bulletin of the Seismological Society of America, 96, 5, 1753--1763.Google ScholarGoogle ScholarCross RefCross Ref
  33. Zhou, J., Unat, D., Choi, D., Guest, C. an Cui, Y. 2012. Hands-on performance tuning of 3D finite difference earthquake simulation on GPU fermi chipset. In Proc. of Int'l. Conf. on Computational Science (ICCS'12, Omaha, Nebraska, June 4--6, 2012), 9, 976--985.Google ScholarGoogle ScholarCross RefCross Ref
  34. Zhou, J., Cui, Y., Poyraz, E., Choi, D. and Guest, C. 2013. Multi-GPU implementation of a 3D finite difference time domain earthquake code on heterogeneous supercomputers. In Proc. of Int'l. Conf. on Computational Science (ICCS'13, Barcelona, June 5--7, 2013), 18, 1255--1264.Google ScholarGoogle Scholar
  1. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SC '13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
      November 2013
      1123 pages
      ISBN:9781450323789
      DOI:10.1145/2503210
      • General Chair:
      • William Gropp,
      • Program Chair:
      • Satoshi Matsuoka

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 November 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SC '13 Paper Acceptance Rate91of449submissions,20%Overall Acceptance Rate1,516of6,373submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader