skip to main content
10.1145/2505821.2505828acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

A review of urban computing for mobile phone traces: current methods, challenges and opportunities

Published:11 August 2013Publication History

ABSTRACT

In this work, we present three classes of methods to extract information from triangulated mobile phone signals, and describe applications with different goals in spatiotemporal analysis and urban modeling. Our first challenge is to relate extracted information from phone records (i.e., a set of time-stamped coordinates estimated from signal strengths) with destinations by each of the million anonymous users. By demonstrating a method that converts phone signals into small grid cell destinations, we present a framework that bridges triangulated mobile phone data with previously established findings obtained from data at more coarse-grained resolutions (such as at the cell tower or census tract levels). In particular, this method allows us to relate daily mobility networks, called motifs here, with trip chains extracted from travel diary surveys. Compared with existing travel demand models mainly relying on expensive and less-frequent travel survey data, this method represents an advantage for applying ubiquitous mobile phone data to urban and transportation modeling applications. Second, we present a method that takes advantage of the high spatial resolution of the triangulated phone data to infer trip purposes by examining semantic-enriched land uses surrounding destinations in individual's motifs. In the final section, we discuss a portable computational architecture that allows us to manage and analyze mobile phone data in geospatial databases, and to map mobile phone trips onto spatial networks such that further analysis about flows and network performances can be done. The combination of these three methods demonstrate the state-of-the-art algorithms that can be adapted to triangulated mobile phone data for the context of urban computing and modeling applications.

References

  1. N. Ahmed and H. J. Miller. Time-space transformations of geographic space for exploring, analyzing and visualizing transportation systems. Journal of Transport Geography, 15(1):2--17, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali. Smart cities of the future. The European Physical Journal Special Topics, 214(1):481--518, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Ben-Akiva and S. Lerman. Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge, MA, 1985.Google ScholarGoogle Scholar
  4. D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel. Nature, 439(7075):462--465, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  5. J. Candia, M. C. González, P. Wang, T. Schoenharl, G. Madey, and A.-L. Barabási. Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical, 41(22):224015, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  6. F. S. Chapin. Human Activity Patterns in the City: Things People Do in Time and in Space. Wiley, New York, 1974.Google ScholarGoogle Scholar
  7. C. Coffey, R. Nair, F. Pinelli, A. Pozdnoukhov, and F. Calabrese. Missed connections: quantifying and optimizing multi-modal interconnectivity in cities. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pages 26--32. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. L. Cooke and E. Halsey. The shortest route through a network with time-dependent internodal transit times. Journal of mathematical analysis and applications, 14(3):493--498, 1966.Google ScholarGoogle Scholar
  9. U. Demiryurek, F. Banaei-Kashani, and C. Shahabi. Efficient k-nearest neighbor search in time-dependent spatial networks. In Database and Expert Systems Applications, pages 432--449. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and A. Ranganathan. Online computation of fastest path in time-dependent spatial networks, pages 92--111. Advances in Spatial and Temporal Databases. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269--271, 1959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations research, 17(3):395--412, 1969.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, and R. Trasarti. Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal, 20(5):695--719, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. F. Giannotti, D. Pedreschi, A. Pentland, P. Lukowicz, D. Kossmann, J. Crowley, and D. Helbing. A planetary nervous system for social mining and collective awareness. The European Physical Journal Special Topics, 214(1):49--75, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human mobility patterns. Nature, 453(7196):779--782, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  16. T. Hägerstrand. Reflections on "what about people in regional science?". Papers in Regional Science, 66(1):1--6, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Hariharan and K. Toyama. Project lachesis: parsing and modeling location histories. In Geographic Information Science, pages 106--124. Springer, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  18. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100--107, 1968.Google ScholarGoogle Scholar
  19. S. Hasan, C. Schneider, S. V. Ukkusuri, and M. C. González. Spatiotemporal patterns of urban human mobility. Journal of Statistical Physics, 151(1-2), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. http://pgrouting.org.Google ScholarGoogle Scholar
  21. http://postgis.net.Google ScholarGoogle Scholar
  22. http://www.postgresql.org.Google ScholarGoogle Scholar
  23. P. S. Hu and T. R. Reuscher. Summary of travel trends: 2001 national household travel survey. 2004.Google ScholarGoogle Scholar
  24. D. G. Janelle. Space-adjusting technologies and the social ecologies of place: review and research agenda. International Journal of Geographical Information Science, 26(12):2239--2251, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Jiang, J. Ferreira, and M. C. González. Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery, 25(3):478--510, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Jiang, J. Ferreira, and M. C. Gonzalez. Discovering urban spatial-temporal structure from human activity patterns. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp '12, pages 95--102, New York, NY, USA, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A survey of mobile phone sensing. Communications Magazine, IEEE, 48(9):140--150, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L. Barabási, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, and M. Van Alstyne. Computational social science. Science, 323(5915):721--723, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  29. X. Lu, L. Bengtsson, and P. Holme. Predictability of population displacement after the 2010 haiti earthquake. Proceedings of the National Academy of Sciences, 109(29):11576--11581, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  30. K. Lynch. What time is this place? MIT Press, 1976.Google ScholarGoogle Scholar
  31. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks. Science Signaling, 298(5594):824, 2002.Google ScholarGoogle Scholar
  32. NUSTATS. Massachusetts department of transportation: 2010/2011 massachusetts travel survey. 2012. {Online; accessed 17-May-2013}.Google ScholarGoogle Scholar
  33. A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. Journal of the ACM (JACM), 37(3):607--625, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Pan, U. Demiryurek, and C. Shahabi. Utilizing real-world transportation data for accurate traffic prediction. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 595--604. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. R. Pinjari and C. R. Bhat. Activity-based travel demand analysis. A Handbook of Transport Economics, (1):1--36, 2011.Google ScholarGoogle Scholar
  36. C. Renso, S. Puntoni, and E. Frentzos. Wireless network data sources: tracking and synthesizing trajectories. In F. Giannotti and D. Pedreschi, editors, Mobility, Data Mining and Privacy, chapter 3. Springer-Verlag, 2008.Google ScholarGoogle Scholar
  37. F. Rodrigues, A. Alves, E. Polisciuc, S. Jiang, J. Ferreira, and F. Pereira. Estimating Disaggregated Employment Size from Points-of-Interest and Census Data: From Mining the Web to Model Implementation and Visualization. International Journal on Advances in Intelligent Systems, 6(1&2), 2013.Google ScholarGoogle Scholar
  38. C. Roth, S. Kang, M. Batty, and M. Barthélemy. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS One, 6(1), 2011.Google ScholarGoogle Scholar
  39. C. M. Schneider, V. Belik, T. Couronné, Z. Smoreda, and M. C. González. Unravelling daily human mobility motifs. Journal of The Royal Society Interface, 10(84), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  40. S. Shekhar and S. Chawla. Spatial databases: a tour, volume 2003. Prentice Hall Englewood Cliffs, 2003.Google ScholarGoogle Scholar
  41. F. Simini, M. González, A. Maritan, and A. Barabási. A universal model for mobility and migration patterns. Nature, 484(7392):96--100, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  42. C. Song, T. Koren, P. Wang, and A.-L. Barabási. Modelling the scaling properties of human mobility. Nature Physics, 6(10):818--823, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  43. C. Song, Z. Qu, N. Blumm, and A.-L. Barabási. Limits of predictability in human mobility. Science, 327(5968):1018--1021, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  44. P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, and M. C. González. Understanding road usage patterns in urban areas. Scientific reports, 2, 2012.Google ScholarGoogle Scholar
  45. Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. SeMiTri. In Proceedings of the 14th International Conference on Extending Database Technology - EDBT/ICDT '11, page 259, New York, New York, USA, 2011. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Z. Yan, N. Giatrakos, V. Katsikaros, N. Pelekis, and Y. Theodoridis. SeTraStream: semantic-aware trajectory construction over streaming movement data. pages 367--385, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative location and activity recommendations with gps history data. In Proceedings of the 19th international conference on World wide web, pages 1029--1038. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Zheng and X. Xie. Learning travel recommendations from user-generated gps traces. ACM Transactions on Intelligent Systems and Technology (TIST), 2(1):2, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In Proceedings of the 18th international conference on World wide web, pages 791--800. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. G. Zipf. The p 1 p 2/d hypothesis: on the intercity movement of persons. American sociological review, 11(6):677--686, 1946.Google ScholarGoogle Scholar
  1. A review of urban computing for mobile phone traces: current methods, challenges and opportunities

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UrbComp '13: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing
      August 2013
      135 pages
      ISBN:9781450323314
      DOI:10.1145/2505821

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 August 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader