skip to main content
research-article

Flexible muscle-based locomotion for bipedal creatures

Published:01 November 2013Publication History
Skip Abstract Section

Abstract

We present a muscle-based control method for simulated bipeds in which both the muscle routing and control parameters are optimized. This yields a generic locomotion control method that supports a variety of bipedal creatures. All actuation forces are the result of 3D simulated muscles, and a model of neural delay is included for all feedback paths. As a result, our controllers generate torque patterns that incorporate biomechanical constraints. The synthesized controllers find different gaits based on target speed, can cope with uneven terrain and external perturbations, and can steer to target directions.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ackermann, M., and van den Bogert, A. J. 2012. Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy. Journal of Biomechanics 45, 7, 1293--8.Google ScholarGoogle ScholarCross RefCross Ref
  2. Anderson, F., and Pandy, M. 2001. Dynamic optimization of human walking. Journal of Biomechanical Eng. 123, 381.Google ScholarGoogle ScholarCross RefCross Ref
  3. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust Task-based Control Policies for Physics-based Characters. ACM Trans. on Graphics 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Trans. on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Coros, S., Karpathy, A., Jones, B., Reveret, L., and Van De Panne, M. 2011. Locomotion skills for simulated quadrupeds. ACM Trans. on Graphics 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics (SIGGRAPH) 27, 3 (Aug.), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. da Silva, M., Abe, Y., and Popovic, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  8. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-Based Locomotion Controllers. ACM Trans. on Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In ACM SIGGRAPH Papers, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Geijtenbeek, T., and Pronost, N. 2012. Interactive Character Animation Using Simulated Physics: A State-of-the-Art Review. Computer Graphics Forum 31, 8 (Dec.), 2492--2515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Geijtenbeek, T., van Den Bogert, A. J., van Basten, B. J. H., and Egges, A. 2010. Evaluating the physical realism of character animations using musculoskeletal models. In Motion in Games. Springer, 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Geijtenbeek, T., Pronost, N., and van der Stappen, A. 2012. Simple Data-Driven Control for Simulated Bipeds. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Computer Animation, The Eurographics Association, Lausanne, Switzerland, P. Kry and J. Lee, Eds., 211--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Geyer, H., and Herr, H. 2010. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE transactions on neural systems and rehabilitation engineering 18, 3 (June), 263--73.Google ScholarGoogle Scholar
  14. Geyer, H., Seyfarth, A., and Blickhan, R. 2003. Positive force feedback in bouncing gaits? Proc. of the Royal Society of London. Series B: Biological Sciences 270, 1529, 2173--2183.Google ScholarGoogle Scholar
  15. Geyer, H., Seyfarth, A., and Blickhan, R. 2006. Compliant leg behaviour explains basic dynamics of walking and running. Proc. of Biological sciences / The Royal Society 273, 1603 (Nov.), 2861--7.Google ScholarGoogle Scholar
  16. Grzeszczuk, R., and Terzopoulos, D. 1995. Automated learning of muscle-actuated locomotion through control abstraction. In ACM SIGGRAPH Papers, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hansen, N. 2006. The CMA evolution strategy: a comparing review. Towards a new evolutionary computation, 75--102.Google ScholarGoogle Scholar
  18. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. on Graphics 27, 3 (Aug.), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In ACM SIGGRAPH Papers, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. 2007. From swimming to walking with a salamander robot driven by a spinal cord model. Science (New York, N.Y.) 315, 5817 (Mar.), 1416--20.Google ScholarGoogle Scholar
  21. Jain, S., and Liu, C. 2011. Modal-space control for articulated characters. ACM Trans. on Graphics 30, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. on Graphics 28, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kry, P., Reveret, L., Faure, F., and Cani, M.-P. 2009. Modal Locomotion: Animating Virtual Characters with Natural Vibrations. Computer Graphics Forum 28, 2 (Apr.), 289--298.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kwon, T., and Hodgins, J. 2010. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Computer Animation, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In ACM SIGGRAPH Papers, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Trans. on Graphics 29, 4 (July), 129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3, 1071. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liu, L., Yin, K., van de Panne, M., and Guo, B. 2012. Terrain Runner: Control, Parameterization, Composition, and Planning for Highly Dynamic Motions. ACM Trans. on Graphics 31, 6 (Nov.), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Maufroy, C., Kimura, H., and Takase, K. 2008. Towards a general neural controller for quadrupedal locomotion. Neural networks: the official journal of the International Neural Network Society 21, 4 (May), 667--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust Physics-Based Locomotion Using Low-Dimensional Planning. ACM Trans. on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. on Graphics 28, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Muico, U., Popović, J., and Popović, Z. 2011. Composite control of physically simulated characters. ACM Trans. on Graphics 30, 3 (May). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pandy, M., Anderson, F., and Hull, D. 1992. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. Journal of Biomechanical Engineering, Transactions of the ASME 114, 4, 450--460.Google ScholarGoogle ScholarCross RefCross Ref
  34. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. ACM SIGGRAPH Computer Graphics 25, 4 (July), 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sims, K. 1994. Evolving virtual creatures. In ACM SIGGRAPH Papers, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Smith, R., 2006. Open Dynamics Engine User Guide v0.5.Google ScholarGoogle Scholar
  37. Sok, K., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics 26, 3, 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. on Graphics 27, 3, 83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sunada, C., Argaez, D., Dubowsky, S., and Mavroidis, C. 1994. A coordinated Jacobian transpose control for mobile multi-limbed robotic systems. In IEEE Int. Conf. on Robotics and Automation, 1910--1915.Google ScholarGoogle Scholar
  40. Taga, G. 1995. A model of the neuro-musculo-skeletal system for human locomotion. Biological Cybernetics 73, 2, 97--111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tan, J., Gu, Y., Turk, G., and Liu, C. 2011. Articulated swimming creatures. ACM Trans. on Graphics 30, 4, 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Thelen, D., Anderson, F., and Delp, S. 2003. Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics 36, 321--328.Google ScholarGoogle ScholarCross RefCross Ref
  43. Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.- Y. 2010. Real-time physics-based 3d biped character animation using an inverted pendulum model. Visualization and Computer Graphics, IEEE Transactions on 16, 2, 325--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tsang, W., Singh, K., and Fiume, E. 2005. Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Computer Animation, ACM, 319--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. on Graphics 28, 3 (July), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wampler, K., Popović, J., and Popović, Z. 2013. Animal Locomotion Controllers From Scratch. Computer Graphics Forum 32.Google ScholarGoogle Scholar
  47. Wang, J., Fleet, D., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. on Graphics 28, 5, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wang, J., Fleet, D., and Hertzmann, A. 2010. Optimizing Walking Controllers for Uncertain Inputs and Environments. ACM Trans. on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wang, J., Hamner, S., Delp, S., and Koltun, V. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. on Graphics 31, 4, 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wu, J.-c., and Popovic, Z. 2010. Terrain-Adaptive Bipedal Locomotion Control. ACM Trans. on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ye, Y., and Liu, C. 2010. Optimal feedback control for character animation using an abstract model. ACM Trans. on Graphics 29, 4 (July), 74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yin, K. K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Trans. on Graphics 26, 3, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zajac, F. E. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical reviews in biomedical engineering 17, 4, 359--411.Google ScholarGoogle Scholar

Index Terms

  1. Flexible muscle-based locomotion for bipedal creatures

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 6
      November 2013
      671 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2508363
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 November 2013
      Published in tog Volume 32, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader