skip to main content
research-article

Understanding the role of phase function in translucent appearance

Authors Info & Claims
Published:08 October 2013Publication History
Skip Abstract Section

Abstract

Multiple scattering contributes critically to the characteristic translucent appearance of food, liquids, skin, and crystals; but little is known about how it is perceived by human observers. This article explores the perception of translucency by studying the image effects of variations in one factor of multiple scattering: the phase function. We consider an expanded space of phase functions created by linear combinations of Henyey-Greenstein and von Mises-Fisher lobes, and we study this physical parameter space using computational data analysis and psychophysics.

Our study identifies a two-dimensional embedding of the physical scattering parameters in a perceptually meaningful appearance space. Through our analysis of this space, we find uniform parameterizations of its two axes by analytical expressions of moments of the phase function, and provide an intuitive characterization of the visual effects that can be achieved at different parts of it. We show that our expansion of the space of phase functions enlarges the range of achievable translucent appearance compared to traditional single-parameter phase function models. Our findings highlight the important role phase function can have in controlling translucent appearance, and provide tools for manipulating its effect in material design applications.

Skip Supplemental Material Section

Supplemental Material

tp127.mp4

mp4

15.4 MB

References

  1. Adelson, E. H. 2001. On seeing stuff: The perception of materials by humans and machines. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging.Google ScholarGoogle ScholarCross RefCross Ref
  2. Amazon Elastic Compute Cloud. 2013. http://aws.amazon.com/ec2/.Google ScholarGoogle Scholar
  3. Amazon Mechanical Turk. 2013. http://www.mturk.com/.Google ScholarGoogle Scholar
  4. Anderson, B. and Winawer, J. 2008. Layerd image representations and the computation of surface lightness. J. Vis. 8, 7.Google ScholarGoogle ScholarCross RefCross Ref
  5. Aydin, T. O., Cadik, M., Myszkowski, K., and Seidel, H. P. 2010. Video quality assessment for computer graphics applications. ACM Trans. Graph. 29, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bonhams 1793 Limited. 2013. http://www.Bonhams.com/.Google ScholarGoogle Scholar
  7. Brainard, D. and Maloney, L. 2011. Surface color perception and equivalent illumination models. J. Vis. 11, 5.Google ScholarGoogle ScholarCross RefCross Ref
  8. Casella, G. and Berger, R. 2001. Statistical Inference. Duxbury Press.Google ScholarGoogle Scholar
  9. Chandrasekhar, S. 1960. Radiative Transfer. Dover.Google ScholarGoogle Scholar
  10. Cornette, W. and Shanks, J. 1992. Physically reasonable analytic expression for the single-scattering phase function. Appl. Optics 31, 16, 3152--3160.Google ScholarGoogle ScholarCross RefCross Ref
  11. Cox, T. and Cox, M. 2000. Multidimensional Scaling. Chapman and Hall.Google ScholarGoogle Scholar
  12. Cunningham, D., Wallraven, C., Fleming, R., and Straer, W. 2007. Perceptual reparameterization of material properties. In Proceedings of the Workshop on Computational Aesthetics. Eurographics Association, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. 2007. Information-theoretic metric learning. In Proceedings of the International Conference on Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Debevec, P. 1998. Rendering synthetic objects into real scenes: Bridging traditional and image based graphics with global illumination and high dynamic range photography. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dryden, I. and Mardia, K. 1998. Statistical Shape Analysis. John Wiley and Sons.Google ScholarGoogle Scholar
  16. Fisher, R. 1953. Dispersion on a sphere. Proc. Royal Soc. London Math. Phys. Sci. A217, 1130, 295--305.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fleming, R., Dror, R., and Adelson, E. 2003. Real-world illumination and the perception of surface reflectance properties. J. Vis. 3, 5.Google ScholarGoogle ScholarCross RefCross Ref
  18. Fleming, R. W. and Bulthoff, H. H. 2005. Low-level image cues in the perception of translucent materials. ACM Trans. Appl. Percept. 2, 3, 346--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fleming, R. W., Jensen, H. W., and Bulthoff, H. H. 2004. Perceiving translucent materials. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization (APGV'04). 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Frey, B. and Dueck, D. 2007. Clustering by passing messages between data points. Sci. 315, 5814, 972.Google ScholarGoogle ScholarCross RefCross Ref
  21. Frisvad, J., Christensen, N., and Jensen, H. 2007. Computing the scattering properties of participating media using lorenz-mie theory. ACM Trans. Graph 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. DISCO: Acquisition of translucent objects. ACM Trans. Graph 23, 3, 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hara, K., Nishino, K., and Ikeuchi, K. 2008. Mixture of spherical distributions for single-view relighting. Pattern Anal. Mach. Intell. 30, 1, 25--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Henyey, L. and Greenstein, J. 1941. Diffuse radiation in the galaxy. The Astrophys. J. 93, 70--83.Google ScholarGoogle ScholarCross RefCross Ref
  26. Irvin, W. 1965. Multiple scattering by large particles. The Astrophys. J. 142, 1563.Google ScholarGoogle ScholarCross RefCross Ref
  27. Jakob, W. 2010. Mitsuba renderer. http://www.mitsuba-rendering.org.Google ScholarGoogle Scholar
  28. Jensen, H. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters, Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jensen, H. and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jensen, H., Marschner, S., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kattawar, G. 1975. A three-parameter analytic phase function for multiple scattering calculations. J. Quant. Spectros. Radiat. Transfer 15, 9, 839--849.Google ScholarGoogle ScholarCross RefCross Ref
  32. Kerr, W. B. and Pellacini, F. 2010. Toward evaluating material design interface paradigms for novice users. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Khan, E., Reinhard, E., Fleming, R., and Bulthoff, H. 2006. Image-based material editing. ACM Trans. Graph. 25, 3, 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kim, J. and Anderson, B. 2010. Image statistics and the perception of surface gloss and lightness. J. Vis. 10, 9.Google ScholarGoogle ScholarCross RefCross Ref
  35. Koenderink, J. and van Doorn, A. 2001. Shading in the case of translucent objects. In Proceeding of the SPIE Conference on Human Vision and Electronic Imaging. Vol. 4299. 312.Google ScholarGoogle Scholar
  36. Krivanek, J., Ferwerda, J., and Bala, K. 2010. Effects of global illumination approximations on material appearance. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mantiuk, R., Kim, K., Rempel, A., and Heidrich, W. 2011. HDR-vdp2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30, 4, 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Marlow, P., Kim, J., and Anderson, B. 2011. The role of brightness and orientation congruence in the perception of surface gloss. J. Vis. 11, 9.Google ScholarGoogle ScholarCross RefCross Ref
  39. Metelli, F. 1974. The perception of transparency. Sci. Amer. 230, 90--98.Google ScholarGoogle Scholar
  40. Motoyoshi, I. 2010. Highlight-shading relationship as a cue for the perception of translucent and transparent materials. J. Vis. 10, 9.Google ScholarGoogle ScholarCross RefCross Ref
  41. Motoyoshi, I., Nishida, S., Sharan, L., and Adelson, E. 2007. Image statistics and the perception of surface qualities. Nature 447, 7141, 206.Google ScholarGoogle ScholarCross RefCross Ref
  42. Mourant, J., Boyer, J., Hielscher, A., and Bigio, I. 1996. Influence of scattering phase function on light transport measurements in turbid media performed with small source-detector separations. Optics Lett. 21, 7, 546--548.Google ScholarGoogle ScholarCross RefCross Ref
  43. Myszkowski, K., Tawara, T., Akamine, H., and Seidel, H.-P. 2001. Perception-guided global illumination solution for animation rendering. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Narasimhan, S., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S., and Jensen, H. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph, 25, 1003--1012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Ngan, A., Durand, F., and Matusik, W. 2006. Image-driven navigation of analytical brdf models. In Proceedings of the Eurographics Symposium on Rendering. Google ScholarGoogle ScholarCross RefCross Ref
  46. Nishida, S. and Shinya, M. 1998. Use of image-based information in judgments of surface reflectance properties. J. Optics Soc. Amer. Image Sci. Vis. A15, 12, 2951--2965.Google ScholarGoogle ScholarCross RefCross Ref
  47. Pellacini, F., Ferwerda, J. A., and Greenberg, D. P. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: Towards a new standard for image fidelity. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Rosset, S. and Zhu, J. 2007. Peacewise linear regularized solution paths. The Ann. Statist. 35, 3, 1012--1030.Google ScholarGoogle ScholarCross RefCross Ref
  50. Rushmeier, H., Rogowitz, B., and Piatko, C. 2000. Perceptual issues in substituting texture for geometry. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging. Vol. 3959. 372.Google ScholarGoogle Scholar
  51. Scholkopf, B. and Smola, A. 2001. Learning with Kernels. The MIT Press.Google ScholarGoogle Scholar
  52. Sharan, L., Li, Y., Motoyoshi, I., Nishida, S., and Adelson, E. 2008. Image statistics for surface reflectance perception. J. Optics Soc. Amer. Image Sci. Vis. A25, 4, 846--865.Google ScholarGoogle ScholarCross RefCross Ref
  53. Srebro, N., Rennie, J., and Jaakkola, T. 2005. Maximum-margin matrix factorization. In Advances in Neural Information Processing Systems. MIT Press, 1329--1336.Google ScholarGoogle Scholar
  54. Stanford University Computer Graphics Laboratory. 2013. The stanford 3d scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.Google ScholarGoogle Scholar
  55. Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai, A. 2011. Adaptively learning the crowd kernel. In Proceedings of the International Conference on Machine Learning.Google ScholarGoogle Scholar
  56. Thompson, W., Fleming, R., Creem-Regehr, S., and Stefanucci, J. 2011. Visual Perception from a Computer Perspective. CRC Press, Boca Raton, FL. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Toh, K. and Yun, S. 2010. An accelerated proximal gradient algorithm for nuclear norm regularized linear leased squares problems. Pacific J. Optim. 6, 20, 615--640.Google ScholarGoogle Scholar
  58. van de Hulst, H. 1981. Light Scattering by Small Particles. Dover.Google ScholarGoogle Scholar
  59. Vangorp, P. and Dutré, P. 2008. Shape-dependent gloss correction. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization. 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Vangorp, P., Laurijssen, J., and Dutré, P. 2007. The influence of shape on the perception of material reflectance. ACM Trans. Graph. 26, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Westlund, H. B. and Meyer, G. W. 2001. Applying appearance standards to light reflection models. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 501--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wills, J., Agarwal, S., Kriegman, D., and Belongie, S. 2009. Toward a perceptual space for gloss. ACM Trans. Graph. 28, 4, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Wyman, D., Patterson, M., and Wilson, B. 1989. Similarity relations for the interaction parameters in radiation transport. Appl. Optics 28, 24, 5243--5249.Google ScholarGoogle ScholarCross RefCross Ref
  64. Xiao, B. and Brainard, D. 2008. Surface gloss and color perception of 3d objects. Vis. Neurosci. 25, 3, 371--385.Google ScholarGoogle ScholarCross RefCross Ref
  65. Yaroslavsky, A., Yaroslavsky, I., Goldbach, T., and Schwarz-Maier, H. 1999. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements. J. Biomed. Optics 4, 47.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Understanding the role of phase function in translucent appearance

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 32, Issue 5
            September 2013
            142 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2516971
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 8 October 2013
            • Accepted: 1 February 2013
            • Revised: 1 December 2012
            • Received: 1 July 2012
            Published in tog Volume 32, Issue 5

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader