skip to main content
10.1145/2522628.2522903acmconferencesArticle/Chapter ViewAbstractPublication PagesmigConference Proceedingsconference-collections
tutorial

Data-driven Fingertip Appearance for Interactive Hand Simulation

Published:11 November 2013Publication History

ABSTRACT

Contact on a finger pad results in deformation that redistributes blood within the fingertip tissue in a manner correlated to the pressure. We build a data-driven model that relates contact information to the visible changes of the finger nail and surrounding tissue on the back of the finger tip. Our data analysis and model construction makes use of the space of hemoglobin concentrations, as opposed to an RGB color space, which permits the model to be transferred across different fingers and different people. We use principal component analysis to build a compact model which maps well to graphics hardware with an efficient fragment program implementation. We provide a validation of our model, and a demonstration of a grasping controller running in a physically based simulation, where grip strength is visible in both hand posture and the appearance of color changes at the fingertips.

References

  1. Aladdin, R., and Kry, P. 2012. Static pose reconstruction with an instrumented bouldering wall. In Proceedings of the 18th ACM symposium on Virtual reality software and technology, ACM, VRST '12, 177--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1--89:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia Conference, SA '11, 158:1--158:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Borshukov, G., Montgomery, J., and Hable, J. 2007. GPU Gems 3. Addison-Wesley Professional, ch. 15. Playable Universal Capture.Google ScholarGoogle Scholar
  5. Boukhalfi, T. 2012. Automatisation des expressions faciales liÃl'es Ãă lâĂŹactivitÃl' physique. Master's thesis, ÃL'cole de technologie supÃl'rieure.Google ScholarGoogle Scholar
  6. Donner, C., Weyrich, T., d'Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5 (Dec.), 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dutreve, L., Meyer, A., and Bouakaz, S. 2011. Easy acquisition and real-time animation of facial wrinkles. Comp. Anim. Virtual Worlds 22, 2-3, 169--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Huang, H., Zhao, L., Yin, K., Qi, Y., Yu, Y., and Tong, X. 2011. Controllable hand deformation from sparse examples with rich details. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '11, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jakovels, D., Spigulis, J., and Rogule, L. 2011. RGB mapping of hemoglobin distribution in skin. In Clinical and Biomedical Spectroscopy and Imaging II, Optical Society of America, 80872B.Google ScholarGoogle Scholar
  10. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '01, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jimenez, J., Scully, T., Barbosa, N., Donner, C., Alvarez, X., Vieira, T., Matts, P., Orvalho, V., Gutierrez, D., and Weyrich, T. 2010. A practical appearance model for dynamic facial color. In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA '10, 141:1--141:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kider, Jr., J. T., Pollock, K., and Safonova, A. 2011. A data-driven appearance model for human fatigue. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '11, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kry, P. G., and Pai, D. K. 2006. Interaction capture and synthesis. ACM Trans. Graph. 25, 3 (July), 872--880. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '02, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH '00, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liu, C. K. 2009. Dextrous manipulation from a grasping pose. In ACM SIGGRAPH 2009 papers, SIGGRAPH '09, 59:1--59:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Magnenat-Thalmann, N., Laperri'ere, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface '88, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mascaro, S., and Asada, H. 2004. Measurement of finger posture and three-axis fingertip touch force using fingernail sensors. Robotics and Automation, IEEE Transactions on 20, 1, 26--35.Google ScholarGoogle Scholar
  19. Murray, R. M., Sastry, S. S., and Li, Z. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nishidate, I., Maeda, T., Niizeki, K., and Aizu, Y. 2013. Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital rgb image by the wiener estimation method. Sensors 13, 6, 7902--7915.Google ScholarGoogle ScholarCross RefCross Ref
  21. Oat, C. 2007. Animated wrinkle maps. In ACM SIGGRAPH 2007 courses, SIGGRAPH '07, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pai, D. K., Doel, K. v. d., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH '01, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pollard, N. S., and Zordan, V. B. 2005. Physically based grasping control from example. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, 311--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In Proceedings of the 2001 symposium on Interactive 3D graphics, I3D '01, 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Transactions on Graphics 27, 3 (Aug), 83:1--83:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tsumura, N., Haneishi, H., and Miyake, Y. 1999. Independent component analysis of skin color image. Journal of Optical Society of America A 16, 9, 2169--2176.Google ScholarGoogle ScholarCross RefCross Ref
  27. Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., and Miyake, Y. 2003. Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. In ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, 770--779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yin, K., and Pai, D. K. 2003. Footsee: an interactive animation system. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '03, 329--338. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Data-driven Fingertip Appearance for Interactive Hand Simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MIG '13: Proceedings of Motion on Games
        November 2013
        30 pages
        ISBN:9781450325462
        DOI:10.1145/2522628

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 November 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • tutorial
        • Research
        • Refereed limited

        Acceptance Rates

        MIG '13 Paper Acceptance Rate-9of-9submissions,100%Overall Acceptance Rate-9of-9submissions,100%

        Upcoming Conference

        MIG '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader