skip to main content
research-article

Shortest-path queries in static networks

Published:01 March 2014Publication History
Skip Abstract Section

Abstract

We consider the point-to-point (approximate) shortest-path query problem, which is the following generalization of the classical single-source (SSSP) and all-pairs shortest-path (APSP) problems: we are first presented with a network (graph). A so-called preprocessing algorithm may compute certain information (a data structure or index) to prepare for the next phase. After this preprocessing step, applications may ask shortest-path or distance queries, which should be answered as fast as possible.

Due to its many applications in areas such as transportation, networking, and social science, this problem has been considered by researchers from various communities (sometimes under different names): algorithm engineers construct fast route planning methods; database and information systems researchers investigate materialization tradeoffs, query processing on spatial networks, and reachability queries; and theoretical computer scientists analyze distance oracles and sparse spanners. Related problems are considered for compact routing and distance labeling schemes in networking and distributed computing and for metric embeddings in geometry as well.

In this survey, we review selected approaches, algorithms, and results on shortest-path queries from these fields, with the main focus lying on the tradeoff between the index size and the query time. We survey methods for general graphs as well as specialized methods for restricted graph classes, in particular for those classes with arguable practical significance such as planar graphs and complex networks.

References

  1. I. Abraham, Y. Bartal, and O. Neiman. 2008a. Embedding metric spaces in their intrinsic dimension. In 19th ACM-SIAM Symposium on Discrete Algorithms (SODA). 363--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. 2011a. VC-dimension and shortest path algorithms. In 38th International Colloquium on Automata, Languages and Programming (ICALP). 690--699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. 2012a. HLDB: location-based services in databases. In SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS). 339--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. 2011b. A hub-based labeling algorithm for shortest paths in road networks. In 10th International Symposium on Experimental Algorithms (SEA). 230--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. 2012b. Hierarchical hub labelings for shortest paths. In 20th European Symposium on Algorithms (ESA). 24--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. 2010. Highway dimension, shortest paths, and provably efficient algorithms. In 21st ACM-SIAM Symposium on Discrete Algorithms (SODA). 782--793. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. I. Abraham and C. Gavoille. 2006. Object location using path separators. In 25th ACM Symposium on Principles of Distributed Computing (PODC). 188--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Abraham and C. Gavoille. 2011. On approximate distance labels and routing schemes with affine stretch. In 25th International Symposium on Distributed Computing (DISC). 404--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. 2008b. Compact name-independent routing with minimum stretch. ACM Transactions on Algorithms 4, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. 2009. On the bias of traceroute sampling: Or, power-law degree distributions in regular graphs. Journal of the ACM 56, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Agarwal. 2013. The space-stretch-time trade-off in distance oracles. Preprint.Google ScholarGoogle Scholar
  12. R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao. 2012. Shortest paths in less than a millisecond. In 5th Workshop on Online Social Networks (WOSN). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Agarwal and P. B. Godfrey. 2013. Distance oracles for stretch less than 2. In 24th ACM-SIAM Symposium on Discrete Algorithms (SODA). 526--538.Google ScholarGoogle Scholar
  14. R. Agarwal, P. B. Godfrey, and S. Har-Peled. 2011. Approximate distance queries and compact routing in sparse graphs. In 30th IEEE International Conference on Computer Communications (INFOCOM). 1754--1762.Google ScholarGoogle Scholar
  15. R. Agrawal and H. V. Jagadish. 1989. Materialization and incremental update of path information. In 5th International Conference on Data Engineering (ICDE). 374--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. W. Aiello, F. R. K. Chung, and L. Lu. 2000. A random graph model for massive graphs. In 32nd ACM Symposium on Theory of Computing (STOC). 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Ajtai and R. Fagin. 1990. Reachability is harder for directed than for undirected finite graphs. Journal of Symbolic Logic 55, 1, 113--150. Announced at FOCS 1988.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. B. Akers. 1960. The use of Wye-Delta transformations in network simplification. Operations Research 8, 3, 311--323. Announced at Rand Symposium on Mathematical Programming 1959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Akiba, Y. Iwata, and Y. Yoshida. 2013. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In ACM SIGMOD International Conference on Management of Data (SIGMOD). 349--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Akiba, C. Sommer, and K. Kawarabayashi. 2012. Shortest-path queries for complex networks: Exploiting low tree-width outside the core. In 15th International Conference on Extending Database Technology (EDBT). 144--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Alon, P. D. Seymour, and R. Thomas. 1990. A separator theorem for nonplanar graphs. Journal of the American Mathematical Society 3, 4, 801--808. Announced at STOC 1990.Google ScholarGoogle ScholarCross RefCross Ref
  22. S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M. Smid, and C. D. Zaroliagis. 1996. Planar spanners and approximate shortest path queries among obstacles in the plane. In 4th European Symposium on Algorithms (ESA). 514--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Arz, D. Luxen, and P. Sanders. 2013. Transit node routing reconsidered. In 12th International Symposium on Experimental Algorithms (SEA). 55--66.Google ScholarGoogle Scholar
  24. B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. 1998. Near-linear time construction of sparse neighborhood covers. SIAM Journal on Computing 28, 1, 263--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. A. Babenko, A. V. Goldberg, A. Gupta, and V. Nagarajan. 2013. Algorithms for hub label optimization. In 40th International Colloquium on Automata, Languages, and Programming (ICALP). 69--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Z. K. Baker and M. Gokhale. 2007. On the acceleration of shortest path calculations in transportation networks. In 15th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM). 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. L. Barrett, K. R. Bisset, R. Jacob, G. Konjevod, and M. V. Marathe. 2002. Classical and contemporary shortest path problems in road networks: Implementation and experimental analysis of the TRANSIMS router. In 10th European Symposium on Algorithms (ESA). 126--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Bartal, L.-A. Gottlieb, T. Kopelowitz, M. Lewenstein, and L. Roditty. 2011. Fast, precise and dynamic distance queries. In 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA). 840--853. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Bast. 2009. Car or public transport—two worlds. In Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. 355--367. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. 2007a. In transit to constant time shortest-path queries in road networks. In 9th Workshop on Algorithm Engineering and Experiments (ALENEX).Google ScholarGoogle Scholar
  31. H. Bast, S. Funke, P. Sanders, and D. Schultes. 2007b. Fast routing in road networks with transit nodes. Science 316, 5824, 566.Google ScholarGoogle ScholarCross RefCross Ref
  32. S. Baswana, A. Gaur, S. Sen, and J. Upadhyay. 2008. Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error. In 35th International Colloquium on Automata, Languages and Programming (ICALP). 609--621. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Baswana and T. Kavitha. 2010. Faster algorithms for all-pairs approximate shortest paths in undirected graphs. SIAM Journal on Computing 39, 7, 2865--2896. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Baswana and S. Sen. 2006. Approximate distance oracles for unweighted graphs in expected O(n2) time. ACM Transactions on Algorithms 2, 4, 557--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Bauer, T. Columbus, B. Katz, M. Krug, and D. Wagner. 2010a. Preprocessing speed-up techniques is hard. In 7th International Conference on Algorithms and Complexity (CIAC). 359--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Bauer, T. Columbus, I. Rutter, and D. Wagner. 2013. Search-space size in contraction hierarchies. In 40th International Colloquium on Automata, Languages, and Programming (ICALP). 93--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Bauer, G. D'Angelo, D. Delling, and D. Wagner. 2009. The shortcut problem—complexity and approximation. In 35th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM). 105--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Bauer and D. Delling. 2009. SHARC: Fast and robust unidirectional routing. ACM Journal of Experimental Algorithmics 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner. 2010b. Combining hierarchical and goal-directed speed-up techniques for Dijkstra's algorithm. ACM Journal of Experimental Algorithmics 15, 2.3, 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemann. 2009. Accelerating time-dependent multi-criteria timetable information is harder than expected. In 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS).Google ScholarGoogle Scholar
  41. J. Boothroyd. 1967. Algorithms: Author's note on algorithms 22, 23, 24. Computer Journal 10, 3, 306--308.Google ScholarGoogle Scholar
  42. J. Bourgain. 1985. On lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics 52, 1--2, 46--52.Google ScholarGoogle ScholarCross RefCross Ref
  43. M. H. Bourgoin and E. M. J. Heurgon. 1969. Study and comparison of algorithms of the shortest path through planned experiments. In Project Planning by Network Analysis. 106--118.Google ScholarGoogle Scholar
  44. A. Brady and L. Cowen. 2006. Compact routing on power law graphs with additive stretch. In 8th Workshop on Algorithm Engineering and Experiments (ALENEX). 119--128.Google ScholarGoogle Scholar
  45. E. Brunel, D. Delling, A. Gemsa, and D. Wagner. 2010. Space-efficient SHARC-routing. In 9th International Symposium on Experimental Algorithms (SEA). 47--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. F. Buchholz. 2000. Hierarchische Graphen zur Wegesuche. Ph.D. thesis, Universität Stuttgart.Google ScholarGoogle Scholar
  47. F. Buchholz and B. Riedhofer. 1997. Hierarchische Graphen zur kürzesten Wegesuche in planaren Graphen. Tech. rep. 13, Universität Stuttgart.Google ScholarGoogle Scholar
  48. V. Bulitko, Y. Björnsson, N. R. Sturtevant, and R. Lawrence. 2010. Real-time heuristic search for pathfinding in video games. In Artificial Intelligence for Computer Games.Google ScholarGoogle Scholar
  49. P. Butterworth, A. Otis, and J. Stein. 1991. The GemStone object database management system. Communications of the ACM 34, 10, 64--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. S. Cabello. 2012. Many distances in planar graphs. Algorithmica 62, 1--2, 361--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. S. Cabello, E. W. Chambers, and J. Erickson. 2012. Multiple-source shortest paths in embedded graphs. arXiv abs/1202.0314.Google ScholarGoogle Scholar
  52. L. Cao, X. Zhao, H. Zheng, and B. Y. Zhao. 2011. Atlas: Approximating shortest paths in social graphs. Tech. rep. 2011-09, Department of Computer Science, University of California, Santa Barbara.Google ScholarGoogle Scholar
  53. L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao. 2012. The exact distance to destination in undirected world. VLDB Journal 21, 6, 869--888. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. B. A. Chartres. 1967. Letter concerning Nicholson's paper. Computer Journal 10, 1, 118--119.Google ScholarGoogle Scholar
  55. S. Chechik. 2013. Approximate distance oracle with constant query time. arXiv abs/1305.3314.Google ScholarGoogle Scholar
  56. D. Z. Chen and J. Xu. 2000. Shortest path queries in planar graphs. In 32nd ACM Symposium on Theory of Computing (STOC). 469--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. W. Chen, C. Sommer, S.-H. Teng, and Y. Wang. 2012. A compact routing scheme and approximate distance oracle for power-law graphs. ACM Transactions on Algorithms 9, 1, 4:1--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. J. Cheng, Y. Ke, S. Chu, and C. Cheng. 2012. Efficient processing of distance queries in large graphs: a vertex cover approach. In ACM SIGMOD International Conference on Management of Data. 457--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Cheng and J. X. Yu. 2009. On-line exact shortest distance query processing. In 12th International Conference on Extending Database Technology (EDBT). 481--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. 2006. Fast computation of reachability labeling for large graphs. In 10th International Conference on Extending Database Technology (EDBT). 961--979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. 2008. Fast computing reachability labelings for large graphs with high compression rate. In 11th International Conference on Extending Database Technology (EDBT). 193--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. 1996. Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming 73, 129--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. L. Chindelevitch, D. Ziemek, A. Enayetallah, R. Randhawa, B. Sidders, C. Brockel, and E. Huang. 2011. Causal reasoning on biological networks: Interpreting transcriptional changes. In 15th International Conference on Research in Computational Molecular Biology (RECOMB). 34--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. F. R. K. Chung and L. Lu. 2002. The average distances in random graphs with given expected degrees. Internet Mathematics 99, 15879--15882.Google ScholarGoogle Scholar
  65. A. Clauset, C. R. Shalizi, and M. E. J. Newman. 2009. Power-law distributions in empirical data. SIAM Review 51, 4, 661--703. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. E. Cohen. 1998. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing 28, 1, 210--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. 2003. Reachability and distance queries via 2-hop labels. SIAM Journal on Computing 32, 5, 1338--1355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. H. Cohen and E. Porat. 2010. On the hardness of distance oracle for sparse graph. arXiv abs/1006.1117.Google ScholarGoogle Scholar
  69. M. Costa, M. Castro, A. I. T. Rowstron, and P. B. Key. 2004. PIC: Practical internet coordinates for distance estimation. In 24th International Conference on Distributed Computing Systems (ICDCS). 178--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. A. Cvetkovski and M. Crovella. 2009. Hyperbolic embedding and routing for dynamic graphs. In 28th IEEE International Conference on Computer Communications (INFOCOM). 1647--1655.Google ScholarGoogle Scholar
  71. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. 2004. Vivaldi: a decentralized network coordinate system. In Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM). 15--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. G. B. Dantzig. 1960. On the shortest route through a network. Management Science 6, 2, 187--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. G. B. Dantzig. 1963. Linear Programming and Extensions. Princeton University Press.Google ScholarGoogle Scholar
  74. A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. 2010. A sketch-based distance oracle for web-scale graphs. In 3rd International Conference on Web Search and Web Data Mining (WSDM). 401--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. D. Delling. 2009. Engineering and Augmenting Route Planning Algorithms. Ph.D. thesis, Universität Karlsruhe.Google ScholarGoogle Scholar
  76. D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck. 2013. PHAST: Hardware-accelerated shortest path trees. Journal of Parallel and Distributed Computing 73, 7, 940--952.Google ScholarGoogle ScholarCross RefCross Ref
  77. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. 2013a. Customizable Route Planning in Road Networks. Retrieved from http://research.microsoft.com/pubs/198358/crp_web_130724.pdf.Google ScholarGoogle Scholar
  78. D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. F. Werneck. 2011. Graph partitioning with natural cuts. In 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS). 1135--1146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. D. Delling, A. V. Goldberg, and R. F. Werneck. 2013b. Hub label compression. In 12th International Symposium on Experimental Algorithms (SEA). 18--29.Google ScholarGoogle Scholar
  80. D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner. 2009. High-performance multi-level routing. In The Shortest Path Problem: 9th DIMACS Implementation Challenge. Vol. 74. 73--92.Google ScholarGoogle Scholar
  81. D. Delling, P. Sanders, D. Schultes, and D. Wagner. 2009a. Engineering route planning algorithms. In Algorithmics of Large and Complex Networks - Design, Analysis, and Simulation. 117--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. D. Delling, P. Sanders, D. Schultes, and D. Wagner. 2009b. Highway hierarchies star. In The Shortest Path Problem: 9th DIMACS Implementation Challenge. Vol. 74. 141--174.Google ScholarGoogle Scholar
  83. C. Demetrescu, A. V. Goldberg, and D. S. Johnson. 2008. Implementation challenge for shortest paths. In Encyclopedia of Algorithms.Google ScholarGoogle Scholar
  84. E. Demir, C. Aykanat, and B. Barla Cambazoglu. 2008. Clustering spatial networks for aggregate query processing: A hypergraph approach. Information Systems 33, 1, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. N. Deo and C.-Y. Pang. 1984. Shortest path algorithms: Taxonomy and annotation. Networks 14, 257--323.Google ScholarGoogle ScholarCross RefCross Ref
  86. R. B. Dial, F. Glover, D. Karney, and D. Klingman. 1979. A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees. Networks 9, 215--248.Google ScholarGoogle Scholar
  87. E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 269--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. H. Djidjev. 1996. Efficient algorithms for shortest path problems on planar digraphs. In 22nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG). 151--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. H. N. Djidjev. 1985. A linear algorithm for partitioning graphs of fixed genus. Serdica. Bulgariacae mathematicae publicationes 11, 4, 369--387.Google ScholarGoogle Scholar
  90. H. N. Djidjev and C. Sommer. 2011. Approximate distance queries for weighted polyhedral surfaces. In 19th European Symposium on Algorithms (ESA). 579--590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. D. Dor, S. Halperin, and U. Zwick. 2000. All-pairs almost shortest paths. SIAM Journal on Computing 29, 5, 1740--1759. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. J. E. Doran. 1967. An approach to automatic problem-solving. Machine Intelligence 1, 105--124.Google ScholarGoogle Scholar
  93. S. E. Dreyfus. 1969. An appraisal of some shortest-path algorithms. Operations Research 17, 3, 395--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Z. Dvorak, D. Král, and R. Thomas. 2010. Deciding first-order properties for sparse graphs. In 51st IEEE Symposium on Foundations of Computer Science (FOCS). 133--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. M. Enachescu, M. Wang, and A. Goel. 2008. Reducing maximum stretch in compact routing. In 27th IEEE International Conference on Computer Communications (INFOCOM). 336--340.Google ScholarGoogle Scholar
  96. D. Eppstein. 1999. Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3, 3.Google ScholarGoogle ScholarCross RefCross Ref
  97. D. Eppstein and M. T. Goodrich. 2008. Studying (non-planar) road networks through an algorithmic lens. In 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (GIS). 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. P. Erdös. 1964. Extremal problems in graph theory. Theory of Graphs and its Applications, Proceedings of the Symposium Held in Smolenice, 29--36.Google ScholarGoogle Scholar
  99. B. Eriksson, P. Barford, and R. D. Nowak. 2009. Estimating hop distance between arbitrary host pairs. In 28th IEEE International Conference on Computer Communications (INFOCOM). 801--809.Google ScholarGoogle Scholar
  100. J. Fakcharoenphol and S. Rao. 2006. Planar graphs, negative weight edges, shortest paths, and near linear time. Journal of Computer and System Sciences 72, 5, 868--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. J. Fakcharoenphol and T. Saranurak. 2010. Improving stretch bound on the Patrascu--Roditty distance oracle. Preprint.Google ScholarGoogle Scholar
  102. M. Faloutsos, P. Faloutsos, and C. Faloutsos. 1999. On power-law relationships of the Internet topology. In Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM). 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. B. A. Farbey, A. H. Land, and J. D. Murchland. 1967. The cascade algorithm for finding all shortest distances in a directed graph. Management Science 14, 1, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. E. Feuerstein and A. Marchetti-Spaccamela. 1991. Dynamic algorithms for shortest paths in planar graphs. In 17th International Workshop on Graph-Theoretic Concepts in Computer Science (WG). 187--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. R. W. Floyd. 1962. Algorithm 97: Shortest path. Communications of the ACM 5, 6, 345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. G. N. Frederickson. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing 16, 6, 1004--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 3, 596--615. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. L. Fu, D.-H. Sun, and L. R. Rilett. 2006. Heuristic shortest path algorithms for transportation applications: State of the art. Computers & Operations Research 33, 11, 3324--3343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. G. Gallo. 1980. Reoptimization procedures in shortest path problems. Rivista di Matematica per le Scienze Economiche e Sociali 3, 3--13.Google ScholarGoogle Scholar
  110. C. Gavoille and D. Peleg. 2003. Compact and localized distributed data structures. Distributed Computing 16, 2--3, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. 2004. Distance labeling in graphs. Journal of Algorithms 53, 1, 85--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. C. Gavoille and C. Sommer. 2011. Sparse spanners vs. compact routing. In 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 225--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. 2008. Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In 7th International Workshop on Experimental Algorithms (WEA). 319--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. 2012. Exact routing in large road networks using contraction hierarchies. Transportation Science 46, 3, 388--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. H. L. Gelernter. 1963. Realization of a geometry theorem proving machine. Computers and Thought.Google ScholarGoogle Scholar
  116. J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. 1984. A separator theorem for graphs of bounded genus. Journal of Algorithms 5, 3, 391--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. D. E. Gilsinn and C. Witzgall. 1973. A performance comparison of labeling algorithms for calculating shortest path trees. Technical Note 772, National Institute of Standards and Technology.Google ScholarGoogle Scholar
  118. A. Goldberg, H. Kaplan, and R. F. F. Werneck. 2006. Reach for A*: Efficient point-to-point shortest path algorithms. In 8th Workshop on Algorithm Engineering and Experiments (ALENEX). 129--143.Google ScholarGoogle Scholar
  119. A. V. Goldberg. 2007. Point-to-point shortest path algorithms with preprocessing. In 33rd Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM). 88--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. A. V. Goldberg and C. Harrelson. 2005. Computing the shortest path: A* search meets graph theory. In 16th ACM-SIAM Symposium on Discrete Algorithms (SODA). 156--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. A. V. Goldberg, H. Kaplan, and R. F. Werneck. 2009. Reach for A*: Shortest path algorithms with preprocessing. In The Shortest Path Problem: 9th DIMACS Implementation Challenge. Vol. 74. 93--139.Google ScholarGoogle Scholar
  122. A. V. Goldberg, H. Kaplan, and R. F. F. Werneck. 2007. Better landmarks within reach. In 6th International Workshop on Experimental Algorithms (WEA). 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. A. V. Goldberg and R. F. F. Werneck. 2005. Computing point-to-point shortest paths from external memory. In 7th Workshop on Algorithm Engineering and Experiments (ALENEX). 26--40.Google ScholarGoogle Scholar
  124. B. Golden. 1976. Shortest-path algorithms: A comparison. Operations Research 24, 6, 1164--1168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina. 1998. Proximity search in databases. In 24th International Conference on Very Large Data Bases (VLDB). 26--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. A. Gubichev, S. J. Bedathur, S. Seufert, and G. Weikum. 2010. Fast and accurate estimation of shortest paths in large graphs. In 19th ACM Conference on Information and Knowledge Management (CIKM). 499--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. 2008. Approximate distance oracles for geometric spanners. ACM Transactions on Algorithms 4, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. S. Gupta, S. Kopparty, and C. Ravishankar. 2004. Roads, codes, and spatiotemporal queries. In 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS). 115--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. R. Gutman. 2004. Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In 6th Workshop on Algorithm Engineering and Experiments (ALENEX). 100--111.Google ScholarGoogle Scholar
  130. S. Har-Peled and M. Mendel. 2006. Fast construction of nets in low-dimensional metrics and their applications. SIAM Journal on Computing 35, 5, 1148--1184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. P. E. Hart, N. J. Nilsson, and B. R. Raphael. 1968. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Transactions of Systems Science and Cybernetics SSC-4, 2, 100--107.Google ScholarGoogle ScholarCross RefCross Ref
  132. M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. 1997. Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences 55, 1, 3--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. J. Herzen, C. Westphal, and P. Thiran. 2011. Scalable routing easy as PIE: A practical isometric embedding protocol. In 19th IEEE International Conference on Network Protocols (ICNP). 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. L. E. Hitchner. 1968. A comparative investigation of the computational efficiency of shortest path algorithms. Technical Report ORC 68-17, University of California at Berkeley.Google ScholarGoogle Scholar
  135. A. J. Hoffman. 1963. On simple linear programming problems. In Symposia in Pure Mathematics VII. 317--327.Google ScholarGoogle Scholar
  136. M. Holzer, F. Schulz, and D. Wagner. 2008. Engineering multilevel overlay graphs for shortest-path queries. ACM Journal of Experimental Algorithmics 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. M. Holzer, F. Schulz, D. Wagner, and T. Willhalm. 2005. Combining speed-up techniques for shortest-path computations. ACM Journal of Experimental Algorithmics 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. S. Honiden, M. E. Houle, C. Sommer, and M. Wolff. 2010. Approximate shortest path queries in graphs using Voronoi duals. Transactions on Computational Science 9, 28--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. T. C. Hu. 1968. A decomposition algorithm for shortest paths in a network. Operations Research 16, 1, 91--102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. T. C. Hu. 1969. Integer Programming and Network Flows. Addison Wesley.Google ScholarGoogle Scholar
  141. T. C. Hu and W. T. Torres. 1969. Shortcut in the decomposition algorithm for shortest paths in a network. IBM Journal of Research and Development 13, 4, 387--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and K. Mitoh. 1994. A fast algorithm for finding better routes by AI search techniques. In Vehicle Navigation and Information Systems Conference. 291--296.Google ScholarGoogle Scholar
  143. G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. 2011. Improved algorithms for min cut and max flow in undirected planar graphs. In 43rd ACM Symposium on Theory of Computing (STOC). 313--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 2009. 3-HOP: a high-compression indexing scheme for reachability query. In 35th SIGMOD International Conference on Management of Data (SIGMOD). 813--826. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. R. Jin, Y. Xiang, N. Ruan, and H. Wang. 2008. Efficiently answering reachability queries on very large directed graphs. In 34th ACM SIGMOD International Conference on Management of Data (SIGMOD). 595--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. N. Jing, Y.-W. Huang, and E. A. Rundensteiner. 1996. Hierarchical optimization of optimal path finding for transportation applications. In 5th International Conference on Information and Knowledge Management (CIKM). 261--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. N. Jing, Y.-W. Huang, and E. A. Rundensteiner. 1998. Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. IEEE Transactions on Knowledge and Data Engineering 10, 3, 409--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. D. B. Johnson. 1977. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM 24, 1, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. S. Jung and S. Pramanik. 1996. HiTi graph model of topographical roadmaps in navigation systems. In 12th International Conference on Data Engineering (ICDE). 76--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. S. Kannan, M. Naor, and S. Rudich. 1992. Implicit representation of graphs. SIAM Journal on Discrete Mathematics 5, 4, 596--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. F. Karinthy. 1929. Lancszemek.Google ScholarGoogle Scholar
  152. K. Kawarabayashi, P. N. Klein, and C. Sommer. 2011. Linear-space approximate distance oracles for planar, bounded-genus and minor-free graphs. In 38th International Colloquium on Automata, Languages and Programming (ICALP). 135--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. K. Kawarabayashi, C. Sommer, and M. Thorup. 2013. More compact oracles for approximate distances in undirected planar graphs. In 24th ACM-SIAM Symposium on Discrete Algorithms (SODA). 550--563.Google ScholarGoogle Scholar
  154. M. Kitamura and M. Yamazaki. 1965. On the connection of the two shortest route systems. In 8th Japanese Road Conference. 66--68.Google ScholarGoogle Scholar
  155. V. L. Klee. 1964. A “string algorithm” for shortest path in directed networks. Operations Research 12, 3, 428--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. P. N. Klein. 2002. Preprocessing an undirected planar network to enable fast approximate distance queries. In 13th ACM-SIAM Symposium on Discrete Algorithms (SODA). 820--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. P. N. Klein. 2005. Multiple-source shortest paths in planar graphs. In 16th ACM-SIAM Symposium on Discrete Algorithms (SODA). 146--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. P. N. Klein, S. Mozes, and C. Sommer. 2013. Structured recursive separator decompositions for planar graphs in linear time. In 45th ACM Symposium on Theory of Computing (STOC). 505--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. P. N. Klein, S. Mozes, and O. Weimann. 2010. Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2n)-time algorithm. ACM Transactions on Algorithms 6, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. P. N. Klein and S. Subramanian. 1998. A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica 22, 3, 235--249.Google ScholarGoogle ScholarCross RefCross Ref
  161. J. M. Kleinberg. 2000. Navigation in a small world. Nature 406, 6798, 845.Google ScholarGoogle ScholarCross RefCross Ref
  162. J. M. Kleinberg, A. Slivkins, and T. Wexler. 2009. Triangulation and embedding using small sets of beacons. Journal of the ACM 56, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. E. Köhler, R. H. Möhring, and H. Schilling. 2005. Acceleration of shortest path and constrained shortest path computation. In 4th International Workshop on Experimental and Efficient Algorithms (WEA). 126--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. L. Kowalik and M. Kurowski. 2006. Oracles for bounded-length shortest paths in planar graphs. ACM Transactions on Algorithms 2, 3, 335--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. D. V. Krioukov, K. R. Fall, and X. Yang. 2004. Compact routing on Internet-like graphs. In 23rd IEEE International Conference on Computer Communications (INFOCOM).Google ScholarGoogle Scholar
  166. R.-M. Kung, E. N. Hanson, Y. E. Ioannidis, T. K. Sellis, L. D. Shapiro, and M. Stonebraker. 1986. Heuristic search in database systems. In 1st International Workshop on Expert Database Systems. 537--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. J. B. H. Kwa. 1989. BS*: An admissible bidirectional staged heuristic search algorithm. Artificial Intelligence 38, 1, 95--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. A. H. Land and S. W. Stairs. 1967. The extension of the cascade algorithm to large graphs. Management Science 14, 1, 29--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. U. Lauther. 2004. An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In Geoinformation und Mobilität—von der Forschung zur praktischen Anwendung. Vol. 22. 219--230.Google ScholarGoogle Scholar
  170. S. Lim, C. Sommer, E. Nikolova, and D. Rus. 2012. Practical route planning under delay uncertainty: Stochastic shortest path queries. In Robotics: Science and Systems VIII. 249--256.Google ScholarGoogle Scholar
  171. R. J. Lipton, D. J. Rose, and R. E. Tarjan. 1979. Generalized nested dissection. SIAM Journal on Numerical Analysis 16, 346--358.Google ScholarGoogle ScholarCross RefCross Ref
  172. R. J. Lipton and R. E. Tarjan. 1979. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 2, 177--189.Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. J. Matousek. 1996. On the distortion required for embedding finite metric spaces into normed spaces. Israel Journal of Mathematics 93, 1, 333--344.Google ScholarGoogle ScholarCross RefCross Ref
  174. J. Maue, P. Sanders, and D. Matijevic. 2009. Goal-directed shortest-path queries using precomputed cluster distances. ACM Journal of Experimental Algorithmics 14, 3.2--3.27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. K. Mehlhorn and P. Sanders. 2008. Algorithms and data structures: the basic toolbox. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. M. Mendel and A. Naor. 2007. Ramsey partitions and proximity data structures. Journal of the European Mathematical Society 9, 2, 253--275.Google ScholarGoogle ScholarCross RefCross Ref
  177. M. Mendel and C. Schwob. 2009. Fast C-K-R partitions of sparse graphs. Chicago Journal of Theoretical Computer Science, 1--18.Google ScholarGoogle Scholar
  178. S. Milgram. 1967. The small world problem. Psychology Today 1, 61--67.Google ScholarGoogle Scholar
  179. G. Mills. 1966. A decomposition algorithm for the shortest route problem. Operations Research 14, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. N. Milosavljevic. 2012. On optimal preprocessing for contraction hierarchies. In 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS). 33--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. G. J. Minty. 1957. A comment on the shortest-route problem. Operations Research 5, 5, 724.Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. 2006. Partitioning graphs to speedup Dijkstra's algorithm. ACM Journal of Experimental Algorithmics 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. G. Monge. 1781. Mémoire sur la théorie des déblais et de remblais. Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, 666--704.Google ScholarGoogle Scholar
  184. E. F. Moore. 1959. The shortest path through a maze. In Annals of the Computation Laboratory of Harvard University. Harvard University Press, 285--292.Google ScholarGoogle Scholar
  185. S. Mozes and C. Sommer. 2012. Exact distance oracles for planar graphs. In 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA). 209--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. L. F. Muller and M. Zachariasen. 2007. Fast and compact oracles for approximate distances in planar graphs. In 15th European Symposium on Algorithms (ESA). 657--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. J. D. Murchland. 1965. A new method for finding all elementary paths in a complete directed graph. Tech. rep. LBS-TNT-22, London Business School, Transport Network Theory Unit.Google ScholarGoogle Scholar
  188. J. D. Murchland. 1967. The “once-through” method of finding all shortest distances in a graph from a single origin. Tech. rep. LBS-TNT-56, London Business School, Transport Network Theory Unit.Google ScholarGoogle Scholar
  189. J. Nesetril and P. O. de Mendez. 2006. Linear time low tree-width partitions and algorithmic consequences. In 38th ACM Symposium on Theory of Computing (STOC). 391--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. M. E. J. Newman. 2001. Scientific collaboration networks. II. shortest paths, weighted networks, and centrality. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 64.Google ScholarGoogle Scholar
  191. T. S. E. Ng and H. Zhang. 2002. Predicting internet network distance with coordinates-based approaches. In 21st IEEE International Conference on Computer Communications (INFOCOM).Google ScholarGoogle Scholar
  192. T. A. J. Nicholson. 1966. Finding the shortest route between two points in a network. The Computer Journal 9, 3, 275--280.Google ScholarGoogle ScholarCross RefCross Ref
  193. Y. Nussbaum. 2011. Improved distance queries in planar graphs. In 12th International Symposium on Algorithms and Data Structures (WADS). 642--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. 2003. Query processing in spatial network databases. In 29th International Conference on Very Large Data Bases (VLDB). 802--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. F. Papadopoulos, D. V. Krioukov, M. Boguñá, and A. Vahdat. 2010. Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In 29th IEEE International Conference on Computer Communications (INFOCOM). 2973--2981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. U. Pape. 1974. Implementation and efficiency of Moore-algorithms for the shortest route problem. Mathematical Programming 7, 1, 212--222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. M. Patrascu. 2011. Unifying the landscape of cell-probe lower bounds. SIAM Journal on Computing 40, 3, 827--847. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. M. Patrascu and L. Roditty. 2010. Distance oracles beyond the Thorup-Zwick bound. In 51st IEEE Symposium on Foundations of Computer Science (FOCS). 815--823. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. M. Patrascu, L. Roditty, and M. Thorup. 2012. A new infinity of distance oracles for sparse graphs. In 53rd IEEE Symposium on Foundations of Computer Science (FOCS). 738--747. Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. D. Peleg. 2000. Proximity-preserving labeling schemes. Journal of Graph Theory 33, 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. I. S. Pohl. 1971. Bi-directional search. Machine Intelligence 6, 127--140.Google ScholarGoogle Scholar
  202. M. Pollack and W. Wiebenson. 1960. Solutions of the shortest-route problem—a review. Operations Research 8, 2, 224--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. E. Porat and L. Roditty. 2013. Preprocess, set, query! Algorithmica 67, 4, 516--528.Google ScholarGoogle Scholar
  204. M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. 2009. Fast shortest path distance estimation in large networks. In 18th ACM Conference on Information and Knowledge Management (CIKM). 867--876. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. F. P. Preparata and M. I. Shamos. 1985. Computational geometry: an introduction. Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. M. Qiao, H. Cheng, L. Chang, and J. X. Yu. 2012. Approximate shortest distance computing: A query-dependent local landmark scheme. In 28th International Conference on Data Engineering (ICDE). Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. M. Qiao, H. Cheng, and J. X. Yu. 2011. Querying shortest path distance with bounded errors in large graphs. In 23rd International Conference on Scientific and Statistical Database Management (SSDBM). 255--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  208. S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. 2005. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics 21, 7, 1189--1193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. B. Raney and K. Nagel. 2004. Iterative route planning for large-scale modular transportation simulations. Future Generation Computer Systems 20, 7, 1101--1118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. M. J. Rattigan, M. Maier, and D. Jensen. 2006. Using structure indices for efficient approximation of network properties. In 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). 357--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. M. J. Rattigan, M. Maier, and D. Jensen. 2007. Graph clustering with network structure indices. In 24th International Conference on Machine Learning (ICML). 783--790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. B. Riedhofer. 1997. Hierarchische Straßengraphen. M.S. thesis, Universität Stuttgart.Google ScholarGoogle Scholar
  213. L. Roditty, M. Thorup, and U. Zwick. 2005. Deterministic constructions of approximate distance oracles and spanners. In 32nd International Colloquium on Automata, Languages and Programming (ICALP). 261--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush. 2011. 10 lessons from 10 years of measuring and modeling the Internet's autonomous systems. IEEE Journal on Selected Areas in Communications 29, 9, 1810--1821.Google ScholarGoogle ScholarCross RefCross Ref
  215. H. Samet, J. Sankaranarayanan, and H. Alborzi. 2008. Scalable network distance browsing in spatial databases. In ACM SIGMOD International Conference on Management of Data (SIGMOD). 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. A. L. Samuel. 1963. Some studies in machine learning using the game of checkers. Computers and Thought. 3, 211--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  217. P. Sanders. 2009. Algorithm engineering—an attempt at a definition. In Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. 321--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. P. Sanders and D. Schultes. 2005. Highway hierarchies hasten exact shortest path queries. In 13th European Symposium on Algorithms (ESA). 568--579. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. P. Sanders and D. Schultes. 2006. Engineering highway hierarchies. In 14th European Symposium on Algorithms (ESA). 804--816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  220. P. Sanders, D. Schultes, and C. Vetter. 2008. Mobile route planning. In 16th European Symposium on Algorithms (ESA). 732--743. Google ScholarGoogle ScholarDigital LibraryDigital Library
  221. J. Sankaranarayanan and H. Samet. 2009. Distance oracles for spatial networks. In 25th International Conference on Data Engineering (ICDE). 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. J. Sankaranarayanan, H. Samet, and H. Alborzi. 2009. Path oracles for spatial networks. Proceedings of the VLDB Endowment 2, 1, 1210--1221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. J. L. Santos. 2009. Real-world applications of shortest path algorithms. In The Shortest Path Problem: 9th DIMACS Implementation Challenge. Vol. 74. 1--19.Google ScholarGoogle Scholar
  224. R. Schenkel, A. Theobald, and G. Weikum. 2004. HOPI: An efficient connection index for complex XML document collections. In 9th International Conference on Extending Database Technology (EDBT). 237--255.Google ScholarGoogle Scholar
  225. R. Schenkel, A. Theobald, and G. Weikum. 2005. Efficient creation and incremental maintenance of the HOPI index for complex XML document collections. In 21st International Conference on Data Engineering (ICDE). 360--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. J. P. Schmidt. 1998. All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings. SIAM Journal on Computing 27, 4, 972--992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. D. Schultes. 2008. Route planning in road networks. Ph.D. thesis, Universität Karlsruhe.Google ScholarGoogle Scholar
  228. D. Schultes and P. Sanders. 2007. Dynamic highway-node routing. In 6th International Workshop on Experimental Algorithms (WEA). 66--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. F. Schulz, D. Wagner, and C. D. Zaroliagis. 2002. Using multi-level graphs for timetable information in railway systems. In 4th Workshop on Algorithm Engineering and Experiments (ALENEX). 43--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  230. M. Schwartz and T. E. Stern. 1980. Routing techniques used in computer communication networks. IEEE Transactions on Communications 28, 4, 539--552.Google ScholarGoogle Scholar
  231. R. Sedgewick and J. S. Vitter. 1986. Shortest paths in Euclidean graphs. Algorithmica 1, 1, 31--48. Announced at FOCS 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. S. Sen. 2009. Approximating shortest paths in graphs. In 3rd International Workshop on Algorithms and Computation (WALCOM). 32--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  233. Y. Shavitt and T. Tankel. 2008. Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Transactions on Networking 16, 25--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  234. S. Shekhar, A. Fetterer, and B. Goyal. 1997. Materialization trade-offs in hierarchical shortest path algorithms. In 5th International Symposium on Advances in Spatial Databases (SSD). 94--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  235. H. A. Smolleck. 1975. Application of fast sparse-matrix techniques and an energy estimation model for large transportation networks. Ph.D. thesis, University of Texas at Arlington.Google ScholarGoogle Scholar
  236. H. A. Smolleck and M.-S. Chen. 1981. A new approach to near-optimal path assignment through electric-circuit modeling. Networks 11, 335--349.Google ScholarGoogle ScholarCross RefCross Ref
  237. C. Sommer. 2010. Approximate shortest path and distance queries in networks. Ph.D. thesis, The University of Tokyo.Google ScholarGoogle Scholar
  238. C. Sommer, E. Verbin, and W. Yu. 2009. Distance oracles for sparse graphs. In 50th IEEE Symposium on Foundations of Computer Science (FOCS). 703--712. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. B. Stout. 1999. Smart move: Intelligent path-finding. Retrieved from http://www.gamasutra.com/view/feature/3317/smart_move_intelligent_.php.Google ScholarGoogle Scholar
  240. M. Thorup. 2004. Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51, 6, 993--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  241. M. Thorup and U. Zwick. 2001. Compact routing schemes. In ACM Symposium on Parallelism in Algorithms and Architectures. 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  242. M. Thorup and U. Zwick. 2005. Approximate distance oracles. Journal of the ACM 52, 1, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. K. Tretyakov, A. Armas-Cervantes, L. García-Bañuelos, J. Vilo, and M. Dumas. 2011. Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs. In 20th ACM Conference on Information and Knowledge Management (CIKM). 1785--1794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  244. P. Ungar. 1951. A theorem on planar graphs. Journal of the London Mathematical Societys 1--26, 4, 256--262.Google ScholarGoogle ScholarCross RefCross Ref
  245. D. van Vliet. 1978. Improved shortest path algorithms for transport networks. Transportation Research 12, 1, 7--20.Google ScholarGoogle ScholarCross RefCross Ref
  246. M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. de Castro Reis, and B. A. Ribeiro-Neto. 2007. Efficient search ranking in social networks. In 16th ACM Conference on Information and Knowledge Management (CIKM). 563--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  247. D. Wagner and T. Willhalm. 2003. Geometric speed-up techniques for finding shortest paths in large sparse graphs. In 11th European Symposium on Algorithms (ESA). 776--787.Google ScholarGoogle Scholar
  248. D. Wagner and T. Willhalm. 2005. Drawing graphs to speed up shortest-path computations. In 7th Workshop on Algorithm Engineering and Experiments (ALENEX). 17--25.Google ScholarGoogle Scholar
  249. D. Wagner and T. Willhalm. 2007. Speed-up techniques for shortest-path computations. In 24th Symposium on Theoretical Aspects of Computer Science (STACS). 23--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  250. D. Wagner, T. Willhalm, and C. D. Zaroliagis. 2005. Geometric containers for efficient shortest-path computation. ACM Journal of Experimental Algorithmics 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  251. S. Warshall. 1962. A theorem on boolean matrices. Journal of the ACM 9, 1, 11--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. F. Wei. 2010. TEDI: efficient shortest path query answering on graphs. In ACM SIGMOD International Conference on Management of Data (SIGMOD). 99--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. C. Wulff-Nilsen. 2010. Algorithms for planar graphs and graphs in metric spaces. Ph.D. thesis, University of Copenhagen.Google ScholarGoogle Scholar
  254. C. Wulff-Nilsen. 2012. Approximate distance oracles with improved preprocessing time. In 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA). 202--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. C. Wulff-Nilsen. 2013. Approximate distance oracles with improved query time. In 24th ACM-SIAM Symposium on Discrete Algorithms (SODA). 539--549.Google ScholarGoogle ScholarCross RefCross Ref
  256. A. C.-C. Yao. 1981. Should tables be sorted? Journal of the ACM 28, 3, 615--628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  257. C. Zaroliagis. 2008. Engineering algorithms for large network applications. In Encyclopedia of Algorithms.Google ScholarGoogle Scholar
  258. F. B. Zhan and C. E. Noon. 1998. Shortest path algorithms: An evaluation using real road networks. Transportation Science 32, 1, 65--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  259. X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao. 2010. Orion: shortest path estimation for large social graphs. In 3rd Conference on Online Social Networks (WOSN). 9--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  260. X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao. 2011. Efficient shortest paths on massive social graphs. In 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom). 77--86.Google ScholarGoogle Scholar
  261. A. K. Ziliaskopoulos, D. Kotzinos, and H. S. Mahmassani. 1997. Design and implementation of parallel time-dependent least time path algorithms for intelligent transportation systems applications. Transportation Research Part C: Emerging Technologies 5, 2, 95--107.Google ScholarGoogle ScholarCross RefCross Ref
  262. U. Zwick. 2001. Exact and approximate distances in graphs—a survey. In 9th European Symposium on Algorithms (ESA). 33--48. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Shortest-path queries in static networks

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Computing Surveys
              ACM Computing Surveys  Volume 46, Issue 4
              April 2014
              463 pages
              ISSN:0360-0300
              EISSN:1557-7341
              DOI:10.1145/2597757
              Issue’s Table of Contents

              Copyright © 2014 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 March 2014
              • Revised: 1 September 2013
              • Accepted: 1 September 2013
              • Received: 1 June 2012
              Published in csur Volume 46, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader