skip to main content
research-article

TCP ex machina: computer-generated congestion control

Published:27 August 2013Publication History
Skip Abstract Section

Abstract

This paper describes a new approach to end-to-end congestion control on a multi-user network. Rather than manually formulate each endpoint's reaction to congestion signals, as in traditional protocols, we developed a program called Remy that generates congestion-control algorithms to run at the endpoints.

In this approach, the protocol designer specifies their prior knowledge or assumptions about the network and an objective that the algorithm will try to achieve, e.g., high throughput and low queueing delay. Remy then produces a distributed algorithm---the control rules for the independent endpoints---that tries to achieve this objective.

In simulations with ns-2, Remy-generated algorithms outperformed human-designed end-to-end techniques, including TCP Cubic, Compound, and Vegas. In many cases, Remy's algorithms also outperformed methods that require intrusive in-network changes, including XCP and Cubic-over-sfqCoDel (stochastic fair queueing with CoDel for active queue management).

Remy can generate algorithms both for networks where some parameters are known tightly a priori, e.g. datacenters, and for networks where prior knowledge is less precise, such as cellular networks. We characterize the sensitivity of the resulting performance to the specificity of the prior knowledge, and the consequences when real-world conditions contradict the assumptions supplied at design-time.

References

  1. A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Papadimitriou. Selfish Behavior and Stability of the Internet: A Game-Theoretic Analysis of TCP. In SIGCOMM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Allman. Initial Congestion Window Specification. http://tools.ietf.org/html/draft-allman-tcpm-bump-initcwnd-00, 2010.Google ScholarGoogle Scholar
  4. M. Allman. Comments on Bufferbloat. ACM SIGCOMM Computer Communication Review, 43(1), Jan. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion Management Architecture for Internet Hosts. In SIGCOMM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In INFOCOM, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic Behavior of Slowly-Responsive Congestion Control Algorithms. In SIGCOMM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The Complexity of Decentralized Control of Markov Decision Processes. Mathematics of Operations Research, 27(4):819--840, Nov. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. S. Brakmo, S. W. O'Malley, and L. L. Peterson. TCP Vegas: New Techniques for Congestion Detection and Avoidance. In SIGCOMM, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D.-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks. Computer Networks and ISDN Systems, 17:1--14, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP's Initial Window. http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-08, 2013.Google ScholarGoogle Scholar
  12. D. Clark. The Design Philosophy of the DARPA Internet Protocols. In SIGCOMM, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and N. Sutin. An Argument for Increasing TCP's Initial Congestion Window. ACM SIGCOMM Computer Communication Review, 40(3):27--33, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. Feng, K. Shin, D. Kandlur, and D. Saha. The BLUE Active Queue Management Algorithms. IEEE/ACM Trans. on Networking, Aug. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Floyd. TCP and Explicit Congestion Notification. CCR, 24(5), Oct. 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion Control for Unicast Applications. In SIGCOMM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM Trans. on Networking, 1(4), Aug. 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Operating System Review, 42(5):64--74, July 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme for TCP. In SIGCOMM, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Hofstadter. Metamagical Themas: Questing for the Essence of Mind and Pattern. Basic books, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Jain. A Delay-based Approach for Congestion Avoidance in Interconnected Heterogeneous Computer Networks. In SIGCOMM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Ludwig, J. Mahdavi, G. Montenegro, J. Touch, and L. Wood. Advice for Internet Subnetwork Designers, 2004. RFC 3819, IETF.Google ScholarGoogle Scholar
  24. D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-Delay Product Networks. In SIGCOMM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. P. Kelly, A. Maulloo, and D. Tan. Rate Control in Communication Networks: Shadow Prices, Proportional Fairness and Stability. Journal of the Operational Research Society, 49:237--252, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  26. E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion control Without Reliability. In SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management. In SIGCOMM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Lan, D. Kao, M. Chiang, and A. Sabharwal. An Axiomatic Theory of Fairness. In INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Leith and R. Shorten. H-TCP Protocol for High-Speed Long Distance Networks. In PFLDNet, 2004.Google ScholarGoogle Scholar
  30. S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links. In MobiCom, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. E. McKenney. Stochastic Fairness Queueing. In INFOCOM, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. Meagher. Geometric Modeling Using Octree Encoding. Computer Graphics and Image Processing, 19(2):129--147, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  33. K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue, 10(5), May 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. A. Oliehoek. Decentralized POMDPs. In In Reinforcement Learning: State of the Art, Adaptation, Learning, and Optimization, pages 471--503, 2012.Google ScholarGoogle Scholar
  35. R. Pan, B. Prabhakar, and K. Psounis. CHOKe--A Stateless Active Queue Management Scheme for Approximating Fair Bandwidth Allocation. In INFOCOM, 2000.Google ScholarGoogle Scholar
  36. R. Srikant. The Mathematics of Internet Congestion Control. Birkhauser, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of RCP Practical for Real Networks. In INFOCOM, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  38. K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for High-speed and Long Distance Networks. In INFOCOM, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  39. J. Touch. Automating the Initial Window in TCP. http://tools.ietf.org/html/draft-touch-tcpm-automatic-iw-03, 2012.Google ScholarGoogle Scholar
  40. Z. Wang and J. Crowcroft. A New Congestion Control Scheme: Slow Start and Search (Tri-S). In SIGCOMM, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. D. Wei, C. Jin, S. Low, and S. Hegde. FAST TCP: Motivation, Architecture, Algorithms, Performance. IEEE/ACM Trans. on Networking, 14(6):1246--1259, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. K. Winstein and H. Balakrishnan. End-to-End Transmission Control by Modeling Uncertainty about the Network State . In HotNets-X, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit is Enough. IEEE/ACM Trans. on Networking, 16(6):1281--1294, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks. In INFOCOM, 2004.Google ScholarGoogle Scholar
  45. Y. Yi and M. Chiang. Stochastic Network Utility Maximisation. European Transactions on Telecommunications, 19(4):421--442, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  46. K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion Avoidance in Computer Networks. ACM Trans. on Comp. Sys., 8(2):158--181, May 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. TCP ex machina: computer-generated congestion control

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 43, Issue 4
      October 2013
      595 pages
      ISSN:0146-4833
      DOI:10.1145/2534169
      Issue’s Table of Contents
      • cover image ACM Conferences
        SIGCOMM '13: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM
        August 2013
        580 pages
        ISBN:9781450320566
        DOI:10.1145/2486001

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 August 2013

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader