skip to main content
10.1145/2534248.2534251acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

On specifying and sharing scientific workflow optimization results using research objects

Published: 17 November 2013 Publication History

Abstract

Reusing and repurposing scientific workflows for novel scientific experiments is nowadays facilitated by workflow repositories. Such repositories allow scientists to find existing workflows and re-execute them. However, workflow input parameters often need to be adjusted to the research problem at hand. Adapting these parameters may become a daunting task due to the infinite combinations of their values in a wide range of applications. Thus, a scientist may preferably use an automated optimization mechanism to adjust the workflow set-up and improve the result. Currently, automated optimizations must be started from scratch as optimization meta-data are not stored together with workflow provenance data. This important meta-data is lost and can neither be reused nor assessed by other researchers. In this paper we present a novel approach to capture optimization meta-data by extending the Research Object model and reusing the W3C standards. We validate our proposal through a real-world use case taken from the biodivertsity domain, and discuss the exploitation of our solution in the context of existing e-Science infrastructures.

References

[1]
K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, P. Missier, D. R. Newman, R. Palma, S. Bechhofer, G. C. Esteban, J. M. Gomez-Perez, G. Klyne, K. Page, M. Roos, J. E. Ruiz, S. Soiland-Reyes, L. Verdes-Montenegro, D. De Roure, and C. Goble. Workflow-centric research objects: First class citizens in scholarly discourse. In In Proceedings of the ESWC2012 Workshop on the Future of Scholarly Communication in the Semantic Web, 2012.
[2]
F. Chirigati, V. Silva, E. Ogasawara, D. de Oliveira, J. Dias, F. Porto, P. Valduriez, and M. Mattoso. Evaluating parameter sweep workflows in high performance computing. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, page 2. ACM, 2012.
[3]
M. J. Colaço and G. S. Dulikravich. A Survey of Basic Deterministic, Heuristic and Hybrid Methods for Single Objective Optimization and Response Surface Generation. Thermal Measurements and Inverse Techniques, pages 355--405, 2009.
[4]
M. E. de Souza Muñoz, R. De Giovanni, M. F. de Siqueira, T. Sutton, P. Brewer, R. S. Pereira, D. A. L. Canhos, and V. P. Canhos. openModeller: a generic approach to species' potential distribution modelling. GeoInformatica, 15(1): 111--135, 2011.
[5]
E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems, 25(5): 528--540, 2009.
[6]
X. Fan, P. Brézillon, R. Zhang, and L. Li. Making context explicit towards decision support for a flexible scientific workflow system. In Fourth Workshop on Human Centered Processes, pages 3--9, 2011.
[7]
C. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, and D. De Roure. myExperiment: a repository and social network for the sharing of bioinformatics workflows. Nucleic acids research, 38(suppl 2): W677--W682, 2010.
[8]
J. Guinan, C. Brown, M. F. Dolan, and A. J. Grehan. Ecological niche modelling of the distribution of cold-water coral habitat using underwater remote sensing data. Ecological Informatics, 4(2): 83--92, 2009.
[9]
S. Holl, O. Zimmermann, and M. Hofmann-Apitius. A new optimization phase for scientific workflow management systems. In 8th International Conference on E-Science (e-Science), pages 1--8. IEEE, 2012.
[10]
J. H. Holland. Genetic algorithms. Scientific american, 267(1): 66--72, 1992.
[11]
G. E. Hutchinson. Cold Spring Harbor Symposium on Quantitative Biology. Concluding remarks, 22: 415--427, 1957.
[12]
T. Kiss, P. Greenwell, H. Heindl, G. Terstyanszky, and N. Weingarten. Parameter sweep workflows for modelling carbohydrate recognition. Journal of Grid Computing, 8(4): 587--601, 2010.
[13]
S. A. Kulhanek, B. Leung, and A. Ricciardi. Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecological Applications, 21(1): 203--213, 2011.
[14]
R. Littauer, K. Ram, B. Ludäscher, W. Michener, and R. Koskela. Trends in Use of Scientific Workflows: Insights from a Public Repository and Recommendations for Best Practice. International Journal of Digital Curation, 7(2): 92--100, 2012.
[15]
B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow, E. Deelman, D. De Roure, J. Freire, C. Goble, M. Jones, S. Klasky, T. McPhillips, N. Podhorszki, C. Silva, I. Taylor, and M. A. Vouk. Scientific process automation and workflow management. In Scientific Data Management: Challenges, Technology, and Deployment, Computational Science Series, chapter 13, pages 476--508. Chapman & Hall, 2009.
[16]
K. Miettinen. Nonlinear multiobjective optimization. Springer, 1999.
[17]
P. Missier, B. Ludäscher, S. Dey, M. Wang, T. McPhillips, S. Bowers, M. Agun, and I. Altintas. Golden trail: Retrieving the data history that matters from a comprehensive provenance repository. International Journal of Digital Curation, 7(1): 139--150, 2012.
[18]
P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and C. Goble. Taverna, reloaded. In Proceedings of the 22nd international conference on Scientific and statistical database management, pages 471--481. Springer, 2010.
[19]
S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson. Scheduling parameter sweep workflow in the Grid based on resource competition. Future Generation Computer Systems, 29(5): 1164--1183, 2013.
[20]
J. Stoyanovich, B. Taskar, and S. Davidson. Exploring repositories of scientific workflows. In Proceedings of the 1st International Workshop on Workflow Approaches to New Data-centric Science, page 7. ACM, 2010.
[21]
T. Weise, M. Zapf, R. Chiong, and A. J. Nebro. Why is optimization difficult? In Nature-Inspired Algorithms for Optimisation, volume 193 of Studies in Computational Intelligence, pages 1--50. Springer, 2009.
[22]
E. O. Wiley, K. M. McNyset, A. T. Peterson, C. R. Robins, and A. M. Stewart. Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16(3): 120--127, 2003.

Cited By

View all
  • (2020)Versioned geoscientific workflow for the collaborative geo-simulation of human-nature interactions – a case study of global change and human activitiesInternational Journal of Digital Earth10.1080/17538947.2020.1849439(1-30)Online publication date: 26-Nov-2020
  • (2019)Analysis of potential distribution and impacts for two species of alien crabs in Northern EuropeBiological Invasions10.1007/s10530-019-02044-3Online publication date: 28-Jun-2019
  • (2018)Present and Potential Future Distributions of Asian Horseshoe Crabs Determine Areas for ConservationFrontiers in Marine Science10.3389/fmars.2018.001645Online publication date: 14-May-2018
  • Show More Cited By
  1. On specifying and sharing scientific workflow optimization results using research objects

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WORKS '13: Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science
    November 2013
    133 pages
    ISBN:9781450325028
    DOI:10.1145/2534248
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 November 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. ontology
    2. optimization
    3. research object
    4. scientific workflows
    5. taverna

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SC13

    Acceptance Rates

    WORKS '13 Paper Acceptance Rate 13 of 16 submissions, 81%;
    Overall Acceptance Rate 30 of 54 submissions, 56%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)Versioned geoscientific workflow for the collaborative geo-simulation of human-nature interactions – a case study of global change and human activitiesInternational Journal of Digital Earth10.1080/17538947.2020.1849439(1-30)Online publication date: 26-Nov-2020
    • (2019)Analysis of potential distribution and impacts for two species of alien crabs in Northern EuropeBiological Invasions10.1007/s10530-019-02044-3Online publication date: 28-Jun-2019
    • (2018)Present and Potential Future Distributions of Asian Horseshoe Crabs Determine Areas for ConservationFrontiers in Marine Science10.3389/fmars.2018.001645Online publication date: 14-May-2018
    • (2017)A Level-Wise Load Balanced Scientific Workflow Execution Optimization using NSGA-IIProceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing10.1109/CCGRID.2017.77(882-889)Online publication date: 14-May-2017
    • (2016)Application skeletonsFuture Generation Computer Systems10.1016/j.future.2015.10.00159:C(114-124)Online publication date: 1-Jun-2016
    • (2015)ENM Components: a new set of web service‐based workflow components for ecological niche modellingEcography10.1111/ecog.0155239:4(376-383)Online publication date: 14-Jul-2015
    • (2014)Community Resources for Enabling Research in Distributed Scientific WorkflowsProceedings of the 2014 IEEE 10th International Conference on e-Science - Volume 0110.1109/eScience.2014.44(177-184)Online publication date: 20-Oct-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media