skip to main content
research-article
Open Access

The perception of egocentric distances in virtual environments - A review

Authors Info & Claims
Published:27 December 2013Publication History
Skip Abstract Section

Abstract

Over the last 20 years research has been done on the question of how egocentric distances, i.e., the subjectively reported distance from a human observer to an object, are perceived in virtual environments. This review surveys the existing literature on empirical user studies on this topic. In summary, there is a mean estimation of egocentric distances in virtual environments of about 74% of the modeled distances. Many factors possibly influencing distance estimates were reported in the literature. We arranged these factors into four groups, namely measurement methods, technical factors, compositional factors, and human factors. The research on these factors is summarized, conclusions are drawn, and promising areas for future research are outlined.

References

  1. Akkiraju, N., Edelsbrunner, H., Fu, P., and Qian, J. 1996. Viewing geometric protein structures from inside a CAVE. IEEE Comput. Graph. Appl. 16, 4, 58--61. DOI: http://dx.doi.org/10.1109/38.511855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexandrova, I. V., Teneva, P. T., de la Rosa, S., Kloos, U., Bülthoff, H. H., and Mohler, B. J. 2010. Egocentric distance judgments in a large screen display immersive virtual environment. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (APGV’10). ACM, New York, NY, USA, 57--60. DOI: http://dx.doi.org/10.1145/1836248.1836258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Altenhoff, B. M., Napieralski, P. E., Long, L. O., Bertrand, J. W., Pagano, C. C., Babu, S. V., and Davis, T. A. 2012. Effects of calibration to visual and haptic feedback on near-field depth perception in an immersive virtual environment. In Proceedings of the ACM Symposium on Applied Perception (SAP’12). ACM, New York, 71--78. DOI: http://dx.doi.org/10.1145/2338676.2338691. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Andre, J. and Rogers, S. 2006. Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis. Percept. Psychophysics 68, 3, 353--361. DOI: http://dx.doi.org/10.3758/BF03193682.Google ScholarGoogle ScholarCross RefCross Ref
  5. Armbrüster, C. Wolter, M., Kuhlen, T., Spijkers, W., and Fimm, B. 2008. Depth perception in virtual reality: Distance estimations in peri- and extrapersonal space. CyberPsychology & Behav. 11, 1, 9--15. DOI: http://dx.doi.org/10.1089/cpb.2007.9935.Google ScholarGoogle ScholarCross RefCross Ref
  6. Aymerich-Franch, L., Karutz, C., and Bailenson, J. N. 2012. Effects of facial and voice similarity on presence in a public speaking virtual environment. In Proceedings of the International Society for Presence Research Annual Conference.Google ScholarGoogle Scholar
  7. Backlund, P., Engstrom, H., Hammar, C., Johannesson, M., and Lebram, M. 2007. Sidh—a game based firefighter training simulation. In Proceedings of the 11th International Conference Information Visualization (IV’07). IEEE Computer Society, Washington, DC, 899--907. DOI: http://dx.doi.org/10.1109/IV.2007.100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Balcetis, E. and Dunning, D. 2010. Wishful seeing: More desired objects are seen as closer. Psychological Sci. 21, 1, 147--152. DOI: http://dx.doi.org/10.1177/0956797609356283.Google ScholarGoogle ScholarCross RefCross Ref
  9. Beall, A. C., Loomis, J. M., Philbeck, J. W., and Fikes, T. G. 1995. Absolute motion parallax weakly determines visual scale in real and virtual environments. In Human Vision, Visual Processing, and Digital Display VI (Proc. SPIE), Vol. 2411. SPIE, Bellingham,WA, 288--297. DOI: http://dx.doi.org/10.1117/12.207547.Google ScholarGoogle Scholar
  10. Bergmann, J., Krauβ, E., Münch, A., Jungmann, R., Oberfeld, D., and Hecht, H. 2011. Locomotor and verbal distance judgments in action and vista space. Exper. Brain Res. 210, 1, 13--23. DOI: http://dx.doi.org/10.1007/s00221-011-2597-z.Google ScholarGoogle ScholarCross RefCross Ref
  11. Bian, Z. and Andersen, G. J. 2012. Aging and the perception of egocentric distance. Psychology Aging (2012). DOI: http://dx.doi.org/10.1037/a0030991. To appear.Google ScholarGoogle Scholar
  12. Bingham, G. P., Bradley, A., Bailey, M., and Vinner, R. 2001. Accommodation, occlusion, and disparity matching are used to guide reaching: A comparison of actual versus virtual environments. J. Exper. Psychology: Human Percept. Perform. 27, 6, 1314--1334. DOI: http://dx.doi.org/10.1037//0096-1523.27.6.1314.Google ScholarGoogle ScholarCross RefCross Ref
  13. Bodenheimer, B., Meng, J., Wu, H., Narasimham, G., Rump, B., McNamara, T. P., Carr, T. H., and Rieser, J. J. 2007. Distance estimation in virtual and real environments using bisection. In Proceedings of the 4th symposium on Applied perception in graphics and visualization (APGV’07). ACM, New York, 35--40. DOI: http://dx.doi.org/10.1145/1272582.1272589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Bowman, D. A. and McMahan, R. P. 2007. Virtual reality: How much immersion is enough? Computer 40, 7, 36--43. DOI: http://dx.doi.org/10.1109/MC.2007.257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Bradshaw, M. F., Parton, A. D., and Glennerster, A. 2000. The task-dependent use of binocular disparity and motion parallax information. Vision Res. 40, 27, 3725--3734. DOI: http://dx.doi.org/10.1016/S0042-6989(00)00214-5.Google ScholarGoogle ScholarCross RefCross Ref
  16. Bridgeman, B., Gemmer, A., Forsman, T., and Huemer, V. 2000. Processing spatial information in the sensorimotor branch of the visual system. Vision Res. 40, 25, 3539--3552. DOI: http://dx.doi.org/10.1016/S0042-6989(00)00193-0.Google ScholarGoogle ScholarCross RefCross Ref
  17. Bruder, G., Pusch, A., and Steinicke, F. 2012. Analyzing effects of geometric rendering parameters on size and distance estimation in on-axis stereographics. In Proceedings of the ACM Symposium on Applied Perception (SAP’12). ACM, New York, NY, USA, 111--118. DOI: http://dx.doi.org/10.1145/2338676.2338699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Bruder, G., Steinicke, F., Rothaus, K., and Hinrichs, K. 2009. Enhancing presence in head-mounted display environments by visual body feedback using head-mounted cameras. In Proceedings of the 2009 International Conference on CyberWorlds (CW’09). IEEE Computer Society, Washington, DC, 43--50. DOI: http://dx.doi.org/10.1109/CW.2009.39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Buxton, W., Fitzmaurice, G., Balakrishnan, R., and Kurtenbach, G. 2000. Large displays in automotive design. IEEE Comput. Graph. Appl. 20, 4, 68--75. DOI: http://dx.doi.org/10.1109/38.851753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chambon, M. 2009. Embodied perception with others’ bodies in mind: Stereotype priming influence on the perception of spatial environment. J. Exper. Social Psychology 45, 1, 283--287. DOI: http://dx.doi.org/10.1016/j.jesp.2008.08.023.Google ScholarGoogle ScholarCross RefCross Ref
  21. Combe, E., Posselt, J., and Kemeny, A. 2008. Virtual prototype visualization: A size perception study. In Proceedings of the 5th Nordic Conference on Human-Computer Interaction: Building Bridges (NordiCHI’08). ACM, New York, NY, USA, 581--582. DOI: http://dx.doi.org/10.1145/1463160.1463253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Creem-Regehr, S. H. and Kunz, B. R. 2010. Perception and action. Wiley Interdisciplinary Rev.: Cognitive Sci. 1, 6, 800--810. DOI: http://dx.doi.org/10.1002/wcs.82.Google ScholarGoogle ScholarCross RefCross Ref
  23. Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., and Thompson, W. B. 2005. The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual environments. Perception 34, 2, 191--204. DOI: http://dx.doi.org/10.1068/p5144.Google ScholarGoogle ScholarCross RefCross Ref
  24. Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., and Hart, J. C. 1992. The CAVE: Audio visual experience automatic virtual environment. Commun. ACM 35, 6, 64--72. DOI: http://dx.doi.org/10.1145/129888.129892. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Cummings, J. J., Bailenson, J. N., and Fidler, M. J. 2012. How immersive is enough?: A foundation for a meta-analysis of the effect of immersive technology on measured presence. In Proceedings of the International Society for Presence Research Annual Conference.Google ScholarGoogle Scholar
  26. Cutting, J. E. 2003. Reconceiving perceptual space. In Looking into Pictures: An Interdisciplinary Approach to Pictorial Space, H. Hecht, R. Schwartz, and M. Atherton, Eds., MIT Press, Cambridge, MA, US, 215--238.Google ScholarGoogle Scholar
  27. Cutting, J. E., and Vishton, P. M. 1995. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Handbook of Perception and Cognition, Vol 5; Perception of Space and Motion. W. Epstein and S. J. Rogers, Eds., Academic Press, San Diego, CA, 69--117.Google ScholarGoogle Scholar
  28. Decety, J., Jeannerod, M., and Prablanc, C. 1989. The timing of mentally represented actions. Behav. Brain Res. 34, 1--2, 35--42. DOI: http://dx.doi.org/10.1016/S0166-4328(89)80088-9.Google ScholarGoogle ScholarCross RefCross Ref
  29. Drascic, D. and Milgram, P. 1996. Perceptual issues in augmented reality. In Stereoscopic Displays and Virtual Reality Systems III, M. T. Bolas, S. S. Fisher, and J. O. Merritt, Eds., vol. 2653. SPIE, Bellingham, WA, 123--134. DOI: http://dx.doi.org/10.1117/12.237425.Google ScholarGoogle Scholar
  30. Durgin, F. H., Baird, J. A., Greenburg, M., Russell, R., Shaughnessy, K., and Waymouth, S. 2009. Who is being deceived? The experimental demands of wearing a backpack. Psychonomic Bull. Rev. 16, 5, 964--969. DOI: http://dx.doi.org/10.3758/pbr.16.5.964.Google ScholarGoogle ScholarCross RefCross Ref
  31. Eggleston, R. G., Janson, W. P., and Aldrich, K. A. 1996. Virtual reality system effects on size distance judgments in a virtual environment. In Proceedings of the 1996 Virtual Reality Annual International Symposium (VRAIS’96). IEEE Computer Society, Washington, DC, USA, 139--146. http://dl.acm.org/citation.cfm?id=832290.836043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Fernández-Ruiz, J. and Díaz, R. 1999. Prism adaptation and aftereffect: Specifying the properties of a procedural memory system. Learning & Memory 6, 1, 47--53. DOI: http://dx.doi.org/10.1101/lm.6.1.47.Google ScholarGoogle Scholar
  33. Ferris, S. H. 1972. Motion parallax and absolute distance. J. Exper. Psychology 95, 2, 258--263. DOI: http://dx.doi.org/10.1037/h0033605.Google ScholarGoogle ScholarCross RefCross Ref
  34. Frost, P. and Warren, P. 2000. Virtual reality used in a collaborative architectural design process. In Proceedings of the IEEE International Conference on Information Visualization (IV’00). 568--573. DOI: http://dx.doi.org/10.1109/IV.2000.859814. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Gardner, P. L. and Mon-Williams, M. 2001. Vertical gaze angle: Absolute height-in-scene information for the programming of prehension. Exper. Brain Res. 136, 3, 379--385. DOI: http://dx.doi.org/10.1007/s002210000590.Google ScholarGoogle ScholarCross RefCross Ref
  36. Geuss, M., Stefanucci, J., Creem-Regehr, S., and Thompson, W. B. 2010. Can I pass?: Using affordances to measure perceived size in virtual environments. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (APGV’10). ACM, New York, 61--64. DOI: http://dx.doi.org/10.1145/1836248.1836259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Geuss, M., Stefanucci, J. K., Creem-Regehr, S. H., and Thompson, W. B. 2012. Effect of viewing plane on perceived distances in real and virtual environments. J. Exper. Psychology: Human Percept. Perform. 38, 5, 1242--1253. DOI: http://dx.doi.org/10.1037/a0027524.Google ScholarGoogle ScholarCross RefCross Ref
  38. Gibson, J. J. 1950. The Perception of the Visual World. Houghton Mifflin, Oxford, England.Google ScholarGoogle Scholar
  39. Gogel, W. C. and Tietz, J. D. 1979. A comparison of oculomotor and motion parallax cues of egocentric distance. Vision Res. 19, 10, 1161--1170. DOI: http://dx.doi.org/10.1016/0042-6989(79)90013-0.Google ScholarGoogle ScholarCross RefCross Ref
  40. Goldstein, E. B. 2007. Sensation and Perception (7th ed.). Wadsworth-Thomson Learning, Belmont, California.Google ScholarGoogle Scholar
  41. Goodale, M. A. and Milner, A. D. 1992. Separate visual pathways for perception and action. Trends Neurosci. 15, 1, 20--25. DOI: http://dx.doi.org/10.1016/0166-2236(92)90344-8.Google ScholarGoogle ScholarCross RefCross Ref
  42. Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., and Kearney, J. K. 2010. How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Trans. Appl. Percept. 7, 4, Article 26, 18 pages. DOI: http://dx.doi.org/10.1145/1823738.1823744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Hartung, B., Franz, V. H., Kersten, D., and Buelthoff, H. H. 2001. Is the motor system affected by the hollow face illusion? J. Vision 1, 3, 256. DOI: http://dx.doi.org/10.1167/1.3.256.Google ScholarGoogle Scholar
  44. Harway, N. I. 1963. Judgment of distance in children and adults. J. Exper. Psychology: Applied 65, 4, 385--390. DOI: http://dx.doi.org/10.1037/h0046363.Google ScholarGoogle ScholarCross RefCross Ref
  45. He, Z. J., Wu, B., Ooi, T. L., Yarbrough, G., and Wu, J. 2004. Judging egocentric distance on the ground: Occlusion and surface integration. Perception 33, 7, 789--806. DOI: http://dx.doi.org/10.1068/p5256a.Google ScholarGoogle ScholarCross RefCross Ref
  46. Held, R. 1965. Plasticity in sensory-motor systems. Sci. Am. 213, 5, 84--94. DOI: http://dx.doi.org/10.1038/scientificamerican1165-84.Google ScholarGoogle Scholar
  47. Hendrix, C. and Barfield, W. 1995. Presence in virtual environments as a function of visual and auditory cues. In Proceedings of the Virtual Reality Annual International Symposium (VRAIS’95). IEEE Computer Society, Washington, DC, 74. http://dl.acm.org/citation.cfm?id=527216.836011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Hoffman, D. M., Girshick, A. R., Akeley, K., and Banks, M. S. 2008. Vergence--accommodation conflicts hinder visual performance and cause visual fatigue. J. Vision 8, 3, 1--30. DOI: http://dx.doi.org/10.1167/8.3.33.Google ScholarGoogle ScholarCross RefCross Ref
  49. Holliman, N., Froner, B., and Liversedge, S. 2007. An application driven comparison of depth perception on desktop 3D displays. In Proceedings of SPIE: Stereoscopic displays and virtual reality systems XIV, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, Eds., vol. 6490. SPIE, Bellingham, WA, 64900H--1--64900H--12. DOI: http://dx.doi.org/10.1117/12.706275.Google ScholarGoogle Scholar
  50. Holliman, N. S. 2004. Mapping perceived depth to regions of interest in stereoscopic images. In Proceedings of SPIE: Stereoscopic Displays and Virtual Reality Systems XI, A. J. Woods, M. T. Bolas, J. O. Merritt, and S. A. Benton, Eds., vol. 5291. SPIE, Bellingham, WA, 117--128. DOI: http://dx.doi.org/10.1117/12.525853.Google ScholarGoogle Scholar
  51. Howarth, P. A. 1999. Oculomotor changes within virtual environments. Appl. Ergon. 30, 1, 59--67. DOI: http://dx.doi.org/10.1016/S0003-6870(98)00043-X.Google ScholarGoogle ScholarCross RefCross Ref
  52. Hutchison, J. J. and Loomis, J. M. 2006. Does energy expenditure affect the perception of egocentric distance? A failure to replicate Experiment 1 of Proffitt, Stefanucci, Banton, and Epstein (2003). Spanish J. Psychology 9, 2, 332--339. DOI: http://dx.doi.org/10.1167/6.6.859.Google ScholarGoogle ScholarCross RefCross Ref
  53. Interrante, V., Ries, B., and Anderson, L. 2006. Distance perception in immersive virtual environments, revisited. In Proceedings of the IEEE conference on Virtual Reality (VR’06). IEEE Computer Society, Washington, DC, 3--10. DOI: http://dx.doi.org/10.1109/VR.2006.52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Interrante, V., Ries, B., Lindquist, J., Kaeding, M., and Anderson, L. 2008. Elucidating factors that can facilitate veridical spatial perception in immersive virtual environments. Presence: Teleoper. Virtual Environ. 17, 2, 176--198. DOI: http://dx.doi.org/10.1162/pres.17.2.176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jin, S.-A. A. and Park, N. 2009. Parasocial interaction with my avatar: Effects of interdependent self-construal and the mediating role of self-presence in an avatar-based console game, Wii. CyberPsychology Behav. 12, 6, 723--727. DOI: http://dx.doi.org/10.1089/cpb.2008.0289.Google ScholarGoogle ScholarCross RefCross Ref
  56. Jones, G. R., Lee, D., Holliman, N. S., and Ezra, D. 2001. Controlling perceived depth in stereoscopic images. In Proceedings of SPIE: Stereoscopic Displays and Applications XII, A. J. Woods, M. T. Bolas, J. O. Merritt, and S. A. Benton, Eds., vol. 4297. SPIE, Bellingham, WA, 42--53. DOI: http://dx.doi.org/10.1117/12.430855.Google ScholarGoogle Scholar
  57. Jones, J. A., Suma, E. A., Krum, D. M., and Bolas, M. 2012. Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments. In Proceedings of the ACM Symposium on Applied Perception (SAP’12). ACM, New York, 119--119. DOI: http://dx.doi.org/10.1145/2338676.2338701. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Jones, J. A., Swan, II, J. E., Singh, G., and Ellis, S. R. 2011. Peripheral visual information and its effect on distance judgments in virtual and augmented environments. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV’11). ACM, New York, 29--36. DOI: http://dx.doi.org/10.1145/2077451.2077457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Jones, J. A., Swan, II, J. E., Singh, G., Kolstad, E., and Ellis, S. R. 2008. The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization (APGV’08). ACM, New York, 9--14. DOI: http://dx.doi.org/10.1145/1394281.1394283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Jones, J. A., Swan, II, J. E., Singh, G., Reddy, S., Moser, K., Hua, C., and Ellis, S. R. 2012. Improvements in visually directed walking in virtual environments cannot be explained by changes in gait alone. In Proceedings of the ACM Symposium on Applied Perception (SAP’12). ACM, New York, 11--16. DOI: http://dx.doi.org/10.1145/2338676.2338679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Julesz, B. 1971. Foundations of Cyclopean Perception. University of Chicago Press, Chicago.Google ScholarGoogle Scholar
  62. Kapralos, B., Jenkin, M. R., and Milios, E. 2008. Virtual audio systems. Presence: Teleoper. Virtual Environ. 17, 6, 527--549. DOI: http://dx.doi.org/10.1162/pres.17.6.527. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Kaufman, L. and Kaufman. J. H. 2000. Explaining the moon illusion. In Proceedings of the National Academy of Sciences, vol. 97. The National Academy of Sciences, 500--505. DOI: http://dx.doi.org/10.1073/pnas.97.1.500.Google ScholarGoogle ScholarCross RefCross Ref
  64. Kellner, F., Bolte, B., Bruder, G., Rautenberg, U., Steinicke, F., Lappe, M., and Koch, R. 2012. Geometric calibration of head-mounted displays and its effects on distance estimation. IEEE Trans. Visual. Comput. Graphics 18, 4, 589--596. DOI: http://dx.doi.org/10.1109/TVCG.2012.45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Kenyon, R. V., Phenany, M., Sandin, D., and Defanti, T. 2007a. Accommodation and size-constancy of virtual objects. Ann. Biomed. Eng. 36, 2, 342--348. DOI: http://dx.doi.org/10.1007/s10439-007-9414-7.Google ScholarGoogle ScholarCross RefCross Ref
  66. Kenyon, R. V., Sandin, D., Smith, R. C., Pawlicki, R., and Defanti, T. 2007b. Size-constancy in the CAVE. Presence: Teleoper. Virtual Environ. 16, 2, 172--187. DOI: http://dx.doi.org/10.1162/pres.16.2.172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Klein, E., Swan, J. E., Schmidt, G. S., Livingston, M. A., and Staadt, O. G. 2009. Measurement protocols for medium-field distance perception in large-screen immersive displays. In Proceedings of the 2009 IEEE Virtual Reality Conference (VR’09). IEEE Computer Society, Washington, DC, 107--113. DOI: http://dx.doi.org/10.1109/VR.2009.4811007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Knapp, J. M. and Loomis, J. M. 2004. Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoper. Virtual Environ. 13, 5, 572--577. DOI: http://dx.doi.org/10.1162/1054746042545238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Kruijff, E., Swan, J. E., and Feiner, S. 2010. Perceptual issues in augmented reality revisited. In Proceedings of the 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR’10). 3--12. DOI: http://dx.doi.org/10.1109/ISMAR.2010.5643530.Google ScholarGoogle Scholar
  70. Kuhl, S. A., Creem-Regehr, S. H., and Thompson, W. B. 2006a. Individual differences in accuracy of blind walking to targets on the floor [Abstract]. J. Vision 6, 6, 726a. DOI: http://dx.doi.org/10.1167/6.6.726.Google ScholarGoogle ScholarCross RefCross Ref
  71. Kuhl, S. A., Thompson, W. B., and Creem-Regehr, S. H. 2006b. Minification influences spatial judgments in virtual environments. In Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization (APGV’06). ACM, New York, 15--19. DOI: http://dx.doi.org/10.1145/1140491.1140494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Kuhl, S. A., Thompson, W. B., and Creem-Regehr, S. H. 2009. HMD calibration and its effects on distance judgments. ACM Trans. Appl. Percept. 6, 3, Article 19, 20 pages. DOI: http://dx.doi.org/10.1145/1577755.1577762. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., and Creem-Regehr, S. H. 2009. Revisiting the effect of quality of graphics on distance judgments in virtual environments: A comparison of verbal reports and blind walking. Attention Percept. Psychophys. 71, 6, 1284--1293. DOI: http://dx.doi.org/10.3758/APP.71.6.1284.Google ScholarGoogle ScholarCross RefCross Ref
  74. Künnapas, T. 1968. Distance perception as a function of available visual cues. J. Exper. Psychology 77, 4, 523--529. DOI: http://dx.doi.org/10.1037/h0026050.Google ScholarGoogle ScholarCross RefCross Ref
  75. Lambooij, M., Fortuin, M., Heynderickx, I., and IJsselsteijn, W. 2009. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Sci. Technol. 53, 3, 030201--1--030201--14. DOI: http://dx.doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201.Google ScholarGoogle ScholarCross RefCross Ref
  76. Lappin, J. S., Shelton, A. L., and Rieser, J. J. 2006. Environmental context influences visually perceived distance. Attention Percept. Psychophys. 68, 4, 571--581. DOI: http://dx.doi.org/10.3758/BF03208759.Google ScholarGoogle ScholarCross RefCross Ref
  77. Leyrer, M., Linkenauger, S. A., Bülthoff, H. H., Kloos, U., and Mohler, B. 2011. The influence of eye height and avatars on egocentric distance estimates in immersive virtual environments. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV’11). ACM, New York, 67--74. DOI: http://dx.doi.org/10.1145/2077451.2077464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Li, Z., Phillips, J., and Durgin, F. H. 2011. The underestimation of egocentric distance: evidence from frontal matching tasks. Attention, Percept. Psychophys. 73, 7, 2205--2217. DOI: http://dx.doi.org/10.3758/s13414-011-0170-2.Google ScholarGoogle ScholarCross RefCross Ref
  79. Lin, Q., Xie, X., Erdemir, A., Narasimham, G., McNamara, T. P., Rieser, J., and Bodenheimer, B. 2011. Egocentric distance perception in real and HMD-based virtual environments: The effect of limited scanning method. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV’11). ACM, New York, 75--82. DOI: http://dx.doi.org/10.1145/2077451.2077465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Loftin, R. B., Scerbo, M. W., McKenzie, F. D., and Catanzaro, J. M. 2004. Training in peacekeeping operations using virtual Eenvironments. IEEE Comput. Graph. Appl. 24, 4, 18--21. DOI: http://dx.doi.org/10.1109/MCG.2004.21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Loomis, J. M., Klatzky, R. L., and Golledge, R. G. 1999. Auditory distance perception in real, virtual, and mixed environments. In Mixed Reality: Merging Real and Virtual Worlds, Y. Ohta and H. Tamura, Eds., Ohmsha, Tokyo, 201--214.Google ScholarGoogle Scholar
  82. Loomis, J. M. and Knapp, J. M. 2003. Visual perception of egocentric distance in real and virtual environments. In Virtual and Adaptive Environments, L. J. Hettinger and M. W. Haas, Eds., Erlbaum, Mahwah, NJ, 21--46. DOI: http://dx.doi.org/10.1201/9781410608888.pt1.Google ScholarGoogle Scholar
  83. Loomis, J. M. and Philbeck, J. W. 2008. Measuring perception with spatial updating and action. In Embodiment, Ego-space, and Action, R. L. Klatzky, B. MacWhinney, and M. Behrman, Eds., Psychology Press, New York, 1--43.Google ScholarGoogle Scholar
  84. Luo, X., Kenyon, R. V., Kamper, D. G., Sandin, D. J., and DeFanti, T. A. 2009. On the determinants of size-constancy in a virtual environment. Int. J. Virtual Reality 8, 1, 43--51.Google ScholarGoogle ScholarCross RefCross Ref
  85. Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., and Thach, W. T. 1996. Throwing while looking through prisms: II. Specificity and storage of multiple gaze--throw calibrations. Brain 119, 4, 1199--1211. DOI: http://dx.doi.org/10.1093/brain/119.4.1199.Google ScholarGoogle ScholarCross RefCross Ref
  86. Masaoka, K., Hanazato, A., Emoto, M., Yamanoul, H., Nojiri, and Okano, F. 2006. Spatial distortion prediction system for stereoscopic images. J. Electron. Imaging 15, 1, 013002:1--013002:12. DOI: http://dx.doi.org/10.1117/1.2181178.Google ScholarGoogle ScholarCross RefCross Ref
  87. McManus, E. A., Bodenheimer, B., Streuber, S., de la Rosa, S., Bülthoff, H. H., and Mohler, B. J. 2011. The influence of avatar (self and character) animations on distance estimation, object interaction and locomotion in immersive virtual environments. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV’11). ACM, New York, 37--44. DOI: http://dx.doi.org/10.1145/2077451.2077458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Messing, R. and Durgin, F. H. 2005. Distance perception and the visual horizon in head-mounted displays. ACM Trans. Appl. Percept. 2, 3, 234--250. DOI: http://dx.doi.org/10.1145/1077399.1077403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Metzger, W. 2006. Laws of Seeing. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  90. Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., and John, N. W. 2012. Technical section: A review of virtual environments for training in ball sports. Comput. Graph. 36, 6, 714--726. DOI: http://dx.doi.org/10.1016/j.cag.2012.04.007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Mohler, B. J., Bülthoff, H. H., Thompson, W. B., and Creem-Regehr, S. H. 2008. A full-body avatar improves egocentric distance judgments in an immersive virtual environment. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization (APGV’08). ACM, New York, 194. DOI: http://dx.doi.org/10.1145/1394281.1394323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Mohler, B. J., Creem-Regehr, S. H., and Thompson, W. B. 2006. The influence of feedback on egocentric distance judgments in real and virtual environments. In Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization (APGV’06). ACM, New York, 9--14. DOI: http://dx.doi.org/10.1145/1140491.1140493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Mohler, B. J., Creem-Regehr, S. H., Thompson, W. B., and Bülthoff, H. H. 2010. The effect of viewing a self-avatar on distance judgments in an hmd-based virtual environment. Presence: Teleoper. Virtual Environ. 19, 3, 230--242. DOI: http://dx.doi.org/10.1162/pres.19.3.230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Mon-Williams M. and Tresilian, J. R. 1999. Some recent studies on the extraretinal contribution to distance perception. Perception 28, 2, 167--181. DOI: http://dx.doi.org/10.1068/p2737.Google ScholarGoogle ScholarCross RefCross Ref
  95. Mon-Williams M. and Tresilian, J. R. 2000. Ordinal depth information from accommodation? Ergonomics 43, 3, 391--404. DOI: http://dx.doi.org/10.1080/001401300184486.Google ScholarGoogle Scholar
  96. Murgia, A. and Sharkey, P. M. 2009. Estimation of distances in virtual environments using size constancy. Int. J. Virtual Reality 8, 1, 67--74.Google ScholarGoogle ScholarCross RefCross Ref
  97. Naceri, A. and Chellali, R. 2012. The effect of isolated disparity on depth perception in real and virtual environments. In Proceedings of the 2012 IEEE Virtual Reality (VR’12). IEEE Computer Society, Washington, DC, 107--108. DOI: http://dx.doi.org/10.1109/VR.2012.6180905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Naceri, A., Chellali, R., Dionnet, F., and Toma, S. 2010. Depth perception within virtual environments: Comparison between two display technologies. Int. J. Advances Intell. Syst. 3, 51--64.Google ScholarGoogle Scholar
  99. Napieralski, P. E., Altenhoff, B. M., Bertrand, J. W., Long, L. O., Babu, S. V., Pagano, C. C., Kern, J., and Davis, T. A. 2011. Near-field distance perception in real and virtual environments using both verbal and action responses. ACM Trans. Appl. Percept. 8, 3, Article 18. DOI: http://dx.doi.org/10.1145/2010325.2010328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Narayan, M., Waugh, L., Zhang, X., Bafna, P., and Bowman, D. 2005. Quantifying the benefits of immersion for collaboration in virtual environments. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST’05). ACM, New York, 78--81. DOI: http://dx.doi.org/10.1145/1101616.1101632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Nguyen, T. D., Ziemer, C. J., Grechkin, T., Chihak, B., Plumert, J. M., Cremer, J. F., and Kearney, J. K. 2008. Effects of scale change on distance perception in virtual environments. ACM Trans. Appl. Percept. 8, 4, Article 26, 18 pages. DOI: http://dx.doi.org/10.1145/2043603.2043608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Norman, J. F., Clayton, A. M., Shular, C. F., and Thompson, S. R. 2004. Aging and the perception of depth and 3-D shape from motion parallax. Psychology Aging 19, 3, 506--514. DOI: http://dx.doi.org/10.1037/0882-7974.19.3.506.Google ScholarGoogle ScholarCross RefCross Ref
  103. Ooi, T. L., Wu, B., and He, Z. J. 2001. Distance determined by the angular declination below the horizon. Nature 414, 6860, 197--200. DOI: http://dx.doi.org/10.1038/35102562.Google ScholarGoogle Scholar
  104. Paillé, D., Kemeny, A., and Berthoz, A. 2005. Stereoscopic stimuli are not used in absolute distance evaluation to proximal objects in multi-cue virtual environment. In Proceedings of SPIE: Stereoscopic Displays and Virtual Reality Systems XII, vol. 5664. SPIE, Bellingham, WA, 596--605. DOI: http://dx.doi.org/10.1117/12.587744.Google ScholarGoogle Scholar
  105. Palmer, S. E. 1999. Vision Science: Photons to Phenomenology. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  106. Parks, T. E. 2012. Visual-illusion distance paradoxes: A resolution. Attention, Percept. Psychophys. 74, 8, 1568--1569. DOI: http://dx.doi.org/10.3758/s13414-012-0374-0.Google ScholarGoogle ScholarCross RefCross Ref
  107. Philbeck, J. W. and Loomis, J. M. 1997. Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. J. Exper. Psychology: Human Percept. Perform. 23, 1, 72--85. DOI: http://dx.doi.org/10.1037/0096-1523.23.1.72.Google ScholarGoogle ScholarCross RefCross Ref
  108. Phillips, L., Interrante, V., Kaeding, M., Ries, B., and Anderson, L. 2012. Correlations between physiological response, gait, personality, and presence in immersive virtual environments. Presence: Teleoper. Virtual Environ. 21, 2, 119--141. DOI: http://dx.doi.org/10.1162/PRES_a_00100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Phillips, L., Ries, B., Interrante, V., Kaeding, M., and Anderson, L. 2009. Distance perception in NPR immersive virtual environments, revisited. In Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization (APGV’09). ACM, New York, 11--14. DOI: http://dx.doi.org/10.1145/1620993.1620996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Phillips, L., Ries, B., Kaeding, M., and Interrante, V. 2010. Avatar self-embodiment enhances distance perception accuracy in non-photorealistic immersive virtual environments. In Proceedings of the 2010 IEEE Virtual Reality Conference (VR’10). IEEE Computer Society, Washington, DC, 115--118. DOI: http://dx.doi.org/10.1109/VR.2010.5444802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Plumert, J. M., Kearney, J. K., Cremer, J. F., and Recker, K. 2005. Distance perception in real and virtual environments. ACM Trans. Appl. Percept. 2, 3, 216--233. DOI: http://dx.doi.org/10.1145/1077399.1077402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Pollock, B., Burton, M., Kelly, J. W., Gilbert, S., and Winer, E. 2012. The right view from the wrong location: Depth perception in stereoscopic multi-user virtual environments. IEEE Trans. Visual. Comput. Graphics 18, 4, 581--588. DOI: http://dx.doi.org/10.1109/TVCG.2012.58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Proffitt, D. R. 2006. Distance perception. Curr. Directions Psychological Sci. 15, 3, 131--135. DOI: http://dx.doi.org/10.1111/j.0963-7214.2006.00422.x.Google ScholarGoogle ScholarCross RefCross Ref
  114. Proffitt, D. R. 2008. An action-specific approach to spatial perception. In Embodiment, Ego-space, and Action, R. L. Klatzky, M. Behrmann, and B. MacWhinney, Eds., Erlbaum, Mahwah, NJ, 179--202.Google ScholarGoogle Scholar
  115. Proffitt, D. R. and Caudek, C. 2002. Depth perception and the perception of events. In Handbook of Psychology: Vol. 4 Experimental Psychology, A. F. Healy and R. W. Proctor, Eds., Wiley, New York, 213--236.Google ScholarGoogle Scholar
  116. Proffitt, D. R., Stefanucci, J., Banton, T., and Epstein, W. 2003. The role of effort in perceiving distance. Psychological Sci. 14, 2, 106--112. DOI: http://dx.doi.org/10.1111/1467-9280.t01-1-01427.Google ScholarGoogle ScholarCross RefCross Ref
  117. Ragan, E. D., Wilkes, C., Cao, Y., and Bowman, D. A. 2012. The effects of virtual character animation on spatial judgments. In Proceedings of the 2012 IEEE Virtual Reality (VR’12). IEEE Computer Society, Washington, DC, 141--142. DOI: http://dx.doi.org/10.1109/VR.2012.6180921. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Rand, K. M., Tarampi, M. R., Creem-Regehr, S. H., and Thompson, W. B. 2011. The importance of a visual horizon for distance judgments under severely degraded vision. Perception 40, 2, 143--154. DOI: http://dx.doi.org/10.1068/p6843.Google ScholarGoogle ScholarCross RefCross Ref
  119. Ratan, R. and Hasler B. S. 2010. Exploring self-presence in collaborative virtual teams. PsychNology J. 8, 1, 11--31.Google ScholarGoogle Scholar
  120. Richardson, A. R. and Waller, D. 2005. The effect of feedback training on distance estimation in virtual environments. Appl. Cognit. Psychology 19, 8, 1089--1108. DOI: http://dx.doi.org/10.1002/acp.1140.Google ScholarGoogle ScholarCross RefCross Ref
  121. Richardson, A. R. and Waller, D. 2007. Interaction with an immersive virtual environment corrects users’ distance estimates. Human Factors: J. Human Factors Ergon. Soc. 49, 3, 507--517. DOI: http://dx.doi.org/10.1518/001872007X200139.Google ScholarGoogle ScholarCross RefCross Ref
  122. Riecke, B. E., Behbahani, P. A., and Shaw, C. D. 2009. Display size does not affect egocentric distance perception of naturalistic stimuli. In Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization (APGV’09). ACM, New York, 15--18. DOI: http://dx.doi.org/10.1145/1620993.1620997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Ries, B., Interrante, V., Kaeding, M., and Phillips, L. 2009. Analyzing the effect of a virtual avatar’s geometric and motion fidelity on ego-centric spatial perception in immersive virtual environments. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology (VRST’09). ACM, New York, 59--66. DOI: http://dx.doi.org/10.1145/1643928.1643943. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Rieser, J. J., Ashmead, D. H., Talor, C. R., and Youngquist, G. A. 1990. Visual perception and the guidance of locomotion without vision to previously seen targets. Perception 19, 5, 675--689. DOI: http://dx.doi.org/10.1068/p190675.Google ScholarGoogle ScholarCross RefCross Ref
  125. Rieser, J. J., Pick, H. L., Ashmead, D. H., and Garing, A. E. 1995. Calibration of human locomotion and models of perceptual-motor organization. J. Exp. Psychology: Human Percept. Perform. 21, 3, 480--497. DOI: http://dx.doi.org/10.1037//0096-1523.21.3.480.Google ScholarGoogle ScholarCross RefCross Ref
  126. Robinett, W. and Rolland, J. P. 1992. A computational model for the stereoscopic optics of a head-mounted display. Presence Teleoper. Virtual Environ. 1, 1, 45--62. http://dl.acm.org/citation.cfm?id=128947.128951. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Rosenberg, L. B. 1993. The effect of interocular distance upon operator performance using stereoscopic displays to perform virtual depth tasks. In Proceedings of the 1993 IEEE Virtual Reality Annual International Symposium (VRAIS’93). IEEE Computer Society, Washington, DC, 27--32. DOI: http://dx.doi.org/10.1109/VRAIS.1993.380802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Roumes, C., Meehan, J. W., Plantier, J., and Menu, J.-P. 2001. Distance estimation in a 3-D imaging display. Int. J. Aviation Psychology 11, 4, 381--396. DOI: http://dx.doi.org/10.1207/S15327108IJAP1104_4.Google ScholarGoogle ScholarCross RefCross Ref
  129. Rébillat, M., Boutillon, X., Corteel, E., and Katz, B. F. G. 2011. Audio, visual, and audio-visual egocentric distance perception in virtual environments. In Proceedings of the Forum Acusticum.Google ScholarGoogle Scholar
  130. Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., and Willemsen, P. 2005. Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Trans. Appl. Percept. 2, 1, 35--45. DOI: http://dx.doi.org/10.1145/1048687.1048690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Schuemie, M. J., van der Straater, P., Krijn, M., and van der Mast, C. A. P. G. 2001. Research on presence in virtual reality: A survey. CyberPsychology Behav. 4, 2, 183--201. DOI: http://dx.doi.org/10.1089/109493101300117884.Google ScholarGoogle ScholarCross RefCross Ref
  132. Seron, F. J., Gutierrez, D., Magallon, J. A., Sobreviela, E. J., and Gutierrez, J. A. 2004. A CAVE-like environment as a tool for full-size train design. Virtual Real. 7, 2, 82--93. DOI: http://dx.doi.org/10.1007/s10055-003-0117-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Sinai, M. J., Krebs, W. K., Darken, R. P., Rowland, J. H., and McCarley, J. S. 1999. Egocentric distance perception in a virtual environment using a perceptual matching task. Proc. Human Factors and Ergon. Soc. Ann. Meeting 43, 22, 1256--1260. DOI: http://dx.doi.org/10.1177/154193129904302219.Google ScholarGoogle Scholar
  134. Sinai, M. J., Ooi, T. L., and He, Z. J. 1998. Terrain influences the accurate judgement of distance. Nature 395, 6701, 497--500. DOI: http://dx.doi.org/10.1038/26747.Google ScholarGoogle Scholar
  135. Slater, M., Khanna, P., Mortensen, J., and Yu, I. 2009. Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput. Graph. Appl. 29, 3, 76--84. DOI: http://dx.doi.org/10.1109/MCG.2009.55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Slater, M. and Usoh, M. 1994. Body centred interaction in immersive virtual environments. In Artificial Life and Virtual Reality, N. Magnenat-Thalmann and D. Thalmann, Eds., John Wiley & Sons, Inc., New York, 125--148.Google ScholarGoogle Scholar
  137. Slater, M., Usoh, M., and Steed, A. 1994. Depth of presence in virtual environments. Presence Teleoper. Virtual Environ. 3, 2, 130--144.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Stanney, K. M., Mourant, R. R., and Kennedy, R. S. 1998. Human factors issues in virtual environments: A review of the literature. Presence Teleoper. Virtual Environ. 7, 4, 327--351. DOI: http://dx.doi.org/10.1162/105474698565767. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Stefanucci, J. K., Gagnon, K. T., and Lessard, D. A. 2011. Follow your heart: Emotion adaptively influences perception. Social & Personality Psychology Compass 5, 6, 296--308. DOI: http://dx.doi.org/10.1111/j.1751-9004.2011.00352.x.Google ScholarGoogle ScholarCross RefCross Ref
  140. Steinicke, F., Bruder, G., Hinrichs, K., and Steed, A. 2010. Gradual transitions and their effects on presence and distance estimation. Comput. Graph. 34, 1, 26--33. DOI: http://dx.doi.org/10.1016/j.cag.2009.12.003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Steinicke, F., Bruder, G., and Kuhl, S. 2011. Realistic perspective projections for virtual objects and environments. ACM Trans. Graph. 30, 5, Article 112, 10 pages. DOI: http://dx.doi.org/10.1145/2019627.2019631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Steinicke, F., Bruder, G., Kuhl, S., Willemsen, P., Lappe, M., and Hinrichs, K. 2011. Natural perspective projections for head-mounted displays. IEEE Trans. Visual. Comput. Graphics 17, 7, 888--899. DOI: http://dx.doi.org/10.1109/TVCG.2010.248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Stratton, G. M. 1897. Vision without inversion of the retinal image. Psychological Rev. 4, 4, 341--360. DOI: http://dx.doi.org/10.1037/h0075482.Google ScholarGoogle ScholarCross RefCross Ref
  144. Surdick, R. T. and Davis, E. T. 1997. The perception of distance in simulated visual displays: A comparison of the effectiveness and accuracy of multiple depth cues across viewing distances. Presence: Teleoper. Virtual Environ. 6, 5, 513.Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Swan II, J. E., Jones, A., Kolstad, E., Livingston, M. A., and Smallman, H. S. 2007. Egocentric depth judgments in optical, see-through augmented reality. IEEE Trans. Visual. Comput. Graphics 13, 3, 429--442. DOI: http://dx.doi.org/10.1109/TVCG.2007.1035. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Swenson, H. A. 1932. The relative influence of accommodation and convergence in the judgment of distance. J. Gen. Psychology 7, 2, 360--380. DOI: http://dx.doi.org/10.1080/00221309.1932.9918473.Google ScholarGoogle ScholarCross RefCross Ref
  147. Tai, N.-C. 2012. Daylighting and its impact on depth perception in a daylit space. J. Light Visual Environ. 36, 1, 16--22.Google ScholarGoogle ScholarCross RefCross Ref
  148. Tellegen, A. and Atkinson, G. 1974. Openness to absorbing and self-altering experiences (‘absorption’), a trait related to hypnotic susceptibility. J. Abnormal Psychology 83, 3, 268--277. http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=abn-83-3-268&site=ehost-live.Google ScholarGoogle ScholarCross RefCross Ref
  149. Thomas, G., Goldberg, J. H., Cannon, D. J., and Hillis, S. L. 2002. Surface textures improve the robustness of stereoscopic depth cues. Human Factors: J. Human Factors Ergon. Soc. 44, 1, 157--170. DOI: http://dx.doi.org/10.1518/0018720024494766.Google ScholarGoogle ScholarCross RefCross Ref
  150. Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., and Beall, A. C. 2004. Does the quality of the computer graphics matter when judging distances in visually immersive environments. Presence: Teleoper. Virtual Environ. 13, 5, 560--571. DOI: http://dx.doi.org/10.1162/1054746042545292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. Thomson, J. A. 1983. Is continuous visual monitoring necessary in visually guided locomotion? J. Exp. Psychology: Human Percept. Perform. 9, 3, 427--443. DOI: http://dx.doi.org/10.1037/0096-1523.9.3.427.Google ScholarGoogle ScholarCross RefCross Ref
  152. Ukai, K. and Howarth, P. A. 2008. Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays 29, 2, 106--116. DOI: http://dx.doi.org/10.1016/j.displa.2007.09.004.Google ScholarGoogle ScholarCross RefCross Ref
  153. Wagner, M. 2006. The Geometries of Visual Space. Lawrence Erlbaum Associates, Mahwah, NJ.Google ScholarGoogle Scholar
  154. Walker, J., Zhang, R., and Kuhl, S. A. 2012. Minification and gap affordances in head-mounted displays. In Proceedings of the ACM Symposium on Applied Perception (SAP’12). ACM, New York, 124--124. DOI: http://dx.doi.org/10.1145/2338676.2338706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Waller, D. and Richardson, A. R. 2008. Correcting distance estimates by interacting with immersive virtual environments: Effects of task and available sensory information. J. Exp. Psychology: Appl. 14, 1, 61--72. DOI: http://dx.doi.org/10.1037/1076-898X.14.1.61.Google ScholarGoogle ScholarCross RefCross Ref
  156. Wartell, Z., Hodges, L. F., and Ribarsky, W. 1999. Balancing fusion, image depth and distortion in stereoscopic head-tracked displays. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM, New York, 351--358. DOI: http://dx.doi.org/10.1145/311535.311587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Watson, B. A. and Hodges, L. F. 1995. Using texture maps to correct for optical distortion in head-mounted displays. In Proceedings of the Virtual Reality Annual International Symposium (VRAIS’95). IEEE Computer Society, Washington, DC, 172--178. http://dl.acm.org/citation.cfm?id=527216.836009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Watt, S. J., Akeley, K., Ernst, M. O., and Banks, M. S. 2005. Focus cues affect perceived depth. J. Vision 5, 10, 834--862. DOI: http://dx.doi.org/10.1167/5.10.7.Google ScholarGoogle ScholarCross RefCross Ref
  159. Watt, S. J. and Bradshaw, M. F. 2003. The visual control of reaching and grasping: Binocular disparity and motion parallax. J. Exp. Psychology: Human Percept. Perform. 29, 2, 404--415. DOI: http://dx.doi.org/10.1037/0096-1523.29.2.404.Google ScholarGoogle ScholarCross RefCross Ref
  160. Willemsen, P., Colton, M. B., Creem-Regehr, S. H., and Thompson, W. B. 2004. The effects of head-mounted display mechanics on distance judgments in virtual environments. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization (APGV’04). ACM, New York, NY, 35--38. DOI: http://dx.doi.org/10.1145/1012551.1012558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Willemsen, P., Colton, M. B., Creem-Regehr, S. H., and Thompson, W. B. 2009. The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Trans. Appl. Percept. 6, 2, Article 8, 14 pages. DOI: http://dx.doi.org/10.1145/1498700.1498702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Willemsen, P. and Gooch, A. A. 2002. Perceived egocentric distances in real, image-based, and traditional virtual environments. In Proceedings of the IEEE Virtual Reality Conference 2002 (VR’02). IEEE Computer Society, Washington, DC, 275--276. http://dl.acm.org/citation.cfm?id=580130.835875. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Willemsen, P., Gooch, A. A., Thompson, W. B., and Creem-Regehr, S. H. 2008. Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoper. Virtual Environ. 17, 1, 91--101. DOI: http://dx.doi.org/10.1162/pres.17.1.91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. Witmer, B. G. and Kline, P. B. 1998. Judging Perceived and Traversed Distance in Virtual Environments. Presence: Teleoper. Virtual Environ. 7, 2, 144--167. DOI: http://dx.doi.org/10.1162/105474698565640. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. Witmer, B. G. and Sadowski Jr., W. J. 1998. Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Human Factors 40, 3, 478--488. DOI: http://dx.doi.org/10.1518/001872098779591340.Google ScholarGoogle ScholarCross RefCross Ref
  166. Witt, J. K., Proffitt, D. R., and Epstein, W. 2004. Perceiving distance: A role of effort and intent. Perception 33, 5, 577--590. DOI: http://dx.doi.org/10.1068/p5090.Google ScholarGoogle ScholarCross RefCross Ref
  167. Witt, J. K., Proffitt, D. R., and Epstein, W. 2005. Tool use affects perceived distance, but only when you intend to use it. J. Exp. Psychology: Human Percept. Perform. 31, 5, 880--888. DOI: http://dx.doi.org/10.1037/0096-1523.31.5.880.Google ScholarGoogle ScholarCross RefCross Ref
  168. Witt, J. K., Stefanucci, J. K., Riener, C. R., and Proffitt, D. R. 2007. Seeing beyond the target: Environmental context affects distance perception. Perception 36, 12, 1752--1768. DOI: http://dx.doi.org/10.1068/p5617.Google ScholarGoogle ScholarCross RefCross Ref
  169. Woods, A. J., Docherty, T., and Koch, R. 1993. Image distortions in stereoscopic video systems. Proc. SPIE: Stereoscopic Displays Appl. IV 1915, 36--48. DOI: http://dx.doi.org/10.1117/12.157041.Google ScholarGoogle Scholar
  170. Woods, A. J., Philbeck, J. W., and Danoff, J. V. 2009. The various perceptions of distance: An alternative view of how effort affects distance judgments. J. Exp. Psychology: Human Percept. Perform. 35, 4, 1104--1117. DOI: http://dx.doi.org/10.1037/a0013622.Google ScholarGoogle ScholarCross RefCross Ref
  171. Wu, B., Ooi, T. L., and He, Z. J. 2004. Perceiving distance accurately by a directional process of integrating ground information. Nature 428, 6978, 73--77. DOI: http://dx.doi.org/10.1038/nature02350.Google ScholarGoogle Scholar
  172. Yang, X., Malak, R. C., Lauer, C., Weidig, C., Hagen, H., Hamann, B., and Aurich, J. C. 2011. Virtual reality enhanced manufacturing system design. In Proceedings of the 7th International Conference on Digital Enterprise Technology (DET’11). 125--133.Google ScholarGoogle Scholar
  173. Zahorik, P., Brungart, D. S., and Bronkhorst, A. W. 2005. Auditory distance perception in humans: A summary of past and present research. Acta Acustica United with Acustica 91, 3, 409--420.Google ScholarGoogle Scholar
  174. Zhang, R., Nordman, A., Walker, J., and Kuhl, S. A. 2012. Minification affects verbal- and action-based distance judgments differently in head-mounted displays. ACM Trans. Appl. Percept. 9, 3, Article 14, 13 pages. DOI: http://dx.doi.org/10.1145/2325722.2325727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Ziemer, C. J., Plumert, J. M., Cremer, J. F., and Kearney, J. K. 2009. Estimating distance in real and virtual environments: Does order make a difference? Attention Percept. Psychophys. 71, 5, 1095--1106. DOI: http://dx.doi.org/10.3758/APP.71.5.1096.Google ScholarGoogle Scholar

Index Terms

  1. The perception of egocentric distances in virtual environments - A review

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 46, Issue 2
      November 2013
      483 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/2543581
      Issue’s Table of Contents

      Copyright © 2013 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 December 2013
      • Accepted: 1 April 2013
      • Revised: 1 February 2013
      • Received: 1 August 2012
      Published in csur Volume 46, Issue 2

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader