skip to main content
10.1145/2566486.2567979acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Semantic stability in social tagging streams

Published: 07 April 2014 Publication History

Abstract

One potential disadvantage of social tagging systems is that due to the lack of a centralized vocabulary, a crowd of users may never manage to reach a consensus on the description of resources (e.g., books, users or songs) on the Web. Yet, previous research has provided interesting evidence that the tag distributions of resources may become semantically stable over time as more and more users tag them. At the same time, previous work has raised an array of new questions such as: (i) How can we assess the semantic stability of social tagging systems in a robust and methodical way? (ii) Does semantic stabilization of tags vary across different social tagging systems and ultimately, (iii) what are the factors that can explain semantic stabilization in such systems? In this work we tackle these questions by (i) presenting a novel and robust method which overcomes a number of limitations in existing methods, (ii) empirically investigating semantic stabilization processes in a wide range of social tagging systems with distinct domains and properties and (iii) detecting potential causes for semantic stabilization, specifically imitation behavior, shared background knowledge and intrinsic properties of natural language. Our results show that tagging streams which are generated by a combination of imitation dynamics and shared background knowledge exhibit faster and higher semantic stability than tagging streams which are generated via imitation dynamics or natural language phenomena alone.

References

[1]
J. Alstott, E. Bullmore, and D. Plenz. Powerlaw: a python package for analysis of heavy-tailed distributions, 2013.
[2]
D. Bollen and H. Halpin. The role of tag suggestions in folksonomies. In Proceedings of the 20th ACM conference on Hypertext and hypermedia, HT '09, pages 359--360, New York, NY, USA, 2009. ACM.
[3]
C. Cattuto. Semiotic dynamics in online social communities. The European Physical Journal C-Particles and Fields, 46(2):33--37, 2006.
[4]
C. Cattuto, V. Loreto, and L. Pietronero. Semiotic dynamics and collaborative tagging. Proceedings of the National Academy of Sciences, 104(5):1461--1464, 2007.
[5]
A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661--703, 2009.
[6]
A. Cohen, R. N. Mantegna, and S. Havlin. Numerical analysis of word frequencies in artificial and natural language texts. Fractals, 5(01):95--104, 1997.
[7]
K. Dellschaft and S. Staab. An epistemic dynamic model for tagging systems. In Proceedings of the nineteenth ACM conference on Hypertext and hypermedia, HT '08, pages 71--80, New York, NY, USA, 2008. ACM.
[8]
W.-T. Fu, T. Kannampallil, R. Kang, and J. He. Semantic imitation in social tagging. ACM Transactions on Computer-Human Interaction (TOCHI), 17(3):12:1--12:37, 2010.
[9]
K. Gimpel, N. Schneider, B. O'Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech tagging for twitter: annotation, features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers - Volume 2, HLT '11, pages 42--47, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.
[10]
S. Golder and B. A. Huberman. Usage patterns of collaborative tagging systems. Journal of Information Science, 32(2):198--208, 2006.
[11]
O. Görlitz, S. Sizov, and S. Staab. Pints: peer-to-peer infrastructure for tagging systems. In Proceedings of the 7th international conference on Peer-to-peer systems, IPTPS '08, pages 19--19, Berkeley, CA, USA, 2008. USENIX Association.
[12]
T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum.-Comput. Stud., 43(5--6):907--928, 1995.
[13]
H. Halpin, V. Robu, and H. Shepherd. The complex dynamics of collaborative tagging. In Proceedings of the 16th international conference on World Wide Web, WWW '07, pages 211--220, New York, NY, USA, 2007. ACM.
[14]
R. F. i Cancho and B. Elverag. Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution. PLoS ONE, 5(3):e9411, 2010.
[15]
R. F. i Cancho and R. V. Solé. The small world of human language. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1482):2261--2265, 2001.
[16]
C. T. Kello, G. D. A. Brown, R. F. i Cancho, J. G. Holden, K. Linkenkaer-Hansen, T. Rhodes, and G. C. Van Orden. Scaling laws in cognitive sciences. Trends in Cognitive Sciences, 14(5):223--232, 2010.
[17]
M. E. Kipp and D. G. Campbell. Patterns and inconsistencies in collaborative tagging systems: An examination of tagging practices. Proceedings of the American Society for Information Science and Technology, 43(1):1--18, 2006.
[18]
W. Li. Random texts exhibit zipf's-law-like word frequency distribution. Information Theory, IEEE Transactions on, 38(6):1842--1845, 1992.
[19]
J. Lorince and P. M. Todd. Can simple social copying heuristics explain tag popularity in a collaborative tagging system? In Proceedings of the 5th Annual ACM Web Science Conference, WebSci '13, pages 215--224, New York, NY, USA, 2013. ACM.
[20]
G. Macgregor and E. McCulloch. Collaborative tagging as a knowledge organisation and resource discovery tool. Library review, 55(5):291--300, 2006.
[21]
A. Mathes. Folksonomies: Cooperative classification and communication through shared metadata. http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html, 2004. Accessed: 2014-01--11.
[22]
P. Mika. Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web, 5(1):5--15, 2007.
[23]
G. A. Miller, N. Chomsky, et al. Finitary models of language users. Handbook of mathematical psychology, 2:419--491, 1963.
[24]
M. A. Montemurro and D. Zanette. Frequency-rank distribution of words in large text samples: phenomenology and models. Glottometrics, 4:87--99, 2002.
[25]
A. Rapoport. Zipf's law revisited, pages 1--28. Studies on Zipf's Law. Studienverlag Bockmeyer, 1982.
[26]
C. Schmitz, A. Hotho, R. Jaschke, and G. Stumme. Mining association rules in folksonomies. In Data Science and Classification, pages 261--270. Springer, 2006.
[27]
S. Sen, S. K. Lam, A. M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse, F. M. Harper, and J. Riedl. tagging, communities, vocabulary, evolution. In Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, CSCW '06, pages 181--190, New York, NY, USA, 2006. ACM.
[28]
L. Specia and E. Motta. Integrating folksonomies with the semantic web. In Proceedings of the 4th European conference on The Semantic Web: Research and Applications, ESWC '07, pages 624--639, Berlin, Heidelberg, 2007. Springer-Verlag.
[29]
C. Wagner, S. Asur, and J. Hailpern. Religious politicians and creative photographers: Automatic user categorization in twitter. In ASE/IEEE International Conference on Social Computing, SocialCom '13, 2013.
[30]
W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite rankings. ACM Trans. Inf. Syst., 28(4):20:1--20:38, 2010.
[31]
G. U. Yule. A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. 213(402--410):21--87, 1925.
[32]
G. K. Zipf. Human behavior and the principle of least effort. Addison-Wesley Press, 1949.
[33]
A. Zubiaga, C. Körner, and M. Strohmaier. Tags vs shelves: from social tagging to social classification. In Proceedings of the 22nd ACM conference on Hypertext and hypermedia, HT '11, pages 93--102, New York, NY, USA, 2011. ACM.

Cited By

View all
  • (2021)Learning natural ordering of tags in domain-specific Q&A sites特定领域问答网站中的标签自然顺序研究Frontiers of Information Technology & Electronic Engineering10.1631/FITEE.190064522:2(170-184)Online publication date: 19-Jan-2021
  • (2018)Tag-Based Navigation and VisualizationSocial Information Access10.1007/978-3-319-90092-6_6(181-212)Online publication date: 3-May-2018
  • (2017)Balancing the Fluency-Consistency Tradeoff in Collaborative Information Search with a Recommender ApproachInternational Journal of Human–Computer Interaction10.1080/10447318.2017.137924034:6(557-575)Online publication date: 10-Oct-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '14: Proceedings of the 23rd international conference on World wide web
April 2014
926 pages
ISBN:9781450327442
DOI:10.1145/2566486

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 April 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. distributional semantics
  2. emergent semantics
  3. social semantics
  4. social tagging
  5. stabilization process

Qualifiers

  • Research-article

Conference

WWW '14
Sponsor:
  • IW3C2

Acceptance Rates

WWW '14 Paper Acceptance Rate 84 of 645 submissions, 13%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Learning natural ordering of tags in domain-specific Q&A sites特定领域问答网站中的标签自然顺序研究Frontiers of Information Technology & Electronic Engineering10.1631/FITEE.190064522:2(170-184)Online publication date: 19-Jan-2021
  • (2018)Tag-Based Navigation and VisualizationSocial Information Access10.1007/978-3-319-90092-6_6(181-212)Online publication date: 3-May-2018
  • (2017)Balancing the Fluency-Consistency Tradeoff in Collaborative Information Search with a Recommender ApproachInternational Journal of Human–Computer Interaction10.1080/10447318.2017.137924034:6(557-575)Online publication date: 10-Oct-2017
  • (2017)The structure and dynamics of knowledge network in domain-specific Q&A sitesEmpirical Software Engineering10.1007/s10664-016-9430-z22:1(375-406)Online publication date: 1-Feb-2017
  • (2017)Personalized information recommendation based on synonymy tag optimizationCluster Computing10.1007/s10586-017-1306-522:S3(5467-5478)Online publication date: 8-Nov-2017
  • (2017)Is collective intelligence helps more in polysemy tag optimazed algorithm than commonsense toolCluster Computing10.1007/s10586-017-1025-y22:S4(9967-9976)Online publication date: 5-Jul-2017
  • (2016)On the Duration and Intensity of Competitions in Nonlinear Pólya Urn Processes with FitnessACM SIGMETRICS Performance Evaluation Review10.1145/2964791.290147544:1(299-310)Online publication date: 14-Jun-2016
  • (2016)Optimal Heavy-Traffic Queue Length Scaling in an Incompletely Saturated SwitchACM SIGMETRICS Performance Evaluation Review10.1145/2964791.290146644:1(13-24)Online publication date: 14-Jun-2016
  • (2016)Using Predictions in Online OptimizationACM SIGMETRICS Performance Evaluation Review10.1145/2964791.290146444:1(193-206)Online publication date: 14-Jun-2016
  • (2016)On the Approximation Error of Mean-Field ModelsACM SIGMETRICS Performance Evaluation Review10.1145/2964791.290146344:1(285-297)Online publication date: 14-Jun-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media