skip to main content
10.1145/2566486.2568006acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Modeling contextual agreement in preferences

Authors Info & Claims
Published:07 April 2014Publication History

ABSTRACT

Personalization, or customizing the experience of each individual user, is seen as a useful way to navigate the huge variety of choices on the Web today. A key tenet of personalization is the capacity to model user preferences. The paradigm has shifted from that of individual preferences, whereby we look at a user's past activities alone, to that of shared preferences, whereby we model the similarities in preferences between pairs of users (e.g., friends, people with similar interests). However, shared preferences are still too granular, because it assumes that a pair of users would share preferences across all items. We therefore postulate the need to pay attention to "context", which refers to the specific item on which the preferences between two users are to be estimated. In this paper, we propose a generative model for contextual agreement in preferences. For every triplet consisting of two users and an item, the model estimates both the prior probability of agreement between the two users, as well as the posterior probability of agreement with respect to the item at hand. The model parameters are estimated from ratings data. To extend the model to unseen ratings, we further propose several matrix factorization techniques focused on predicting agreement, rather than ratings. Experiments on real-life data show that our model yields context-specific similarity values that perform better on a prediction task than models relying on shared preferences.

References

  1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE, 17(6), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Ahmed, B. Kanagal, S. Pandey, V. Josifovski, L. G. Pueyo, and J. Yuan. Latent factor models with additive and hierarchically-smoothed user preferences. In WSDM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. M. Bishop and N. M. Nasrabadi. Pattern Recognition and Machine Learning. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Fang, Y. Baoy, and J. Zhang. Misleading opinions provided by advisors: Dishonesty or subjectivity. In IJCAI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2011.Google ScholarGoogle Scholar
  8. T. Hofmann. Collaborative filtering via gaussian probabilistic latent semantic analysis. In SIGIR, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Hofmann. Latent semantic models for collaborative filtering. TOIS, 22(1), 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommendation via cross-domain triadic factorization. In WWW, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender Systems: An Introduction. Cambridge University Press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for collaborative filtering. In SIGIR, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski, J. Yuan, and L. Garcia-Pueyo. Supercharging recommender systems using taxonomies for learning user purchase behavior. PVLDB, 5(10), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In RecSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Koren and J. Sill. OrdRec: An ordinal model for predicting personalized item rating distributions. In RecSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian processes. In ICML, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 1999.Google ScholarGoogle Scholar
  19. G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. X. Liu and K. Aberer. SoCo: a social network aided context-aware recommender system. In WWW, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems: State of the art and trends. In Recommender Systems Handbook, pages 73--105. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  22. H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In SIGIR, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: Social recommendation using probabilistic matrix factorization. In CIKM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. L. W. Mackey, D. Weiss, and M. I. Jordan. Mixed membership matrix factorization. In ICML, 2010.Google ScholarGoogle Scholar
  26. L. B. Marinho, A. Nanopoulos, L. Schmidt-Thieme, R. Jaschke, A. Hotho, G. Stumme, and P. Symeonidis. Social tagging recommender systems. In Recommender Systems Handbook, pages 615--644. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. K. Menon, K.-P. Chitrapura, S. Garg, D. Agarwal, and N. Kota. Response prediction using collaborative filtering with hierarchies and side-information. In KDD, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Missaoui, P. Valtchev, C. Djeraba, and M. Adda. Toward recommendation based on ontology-powered web-usage mining. IEEE Internet Computing, 11(4), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In NIPS, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W. Pan and L. Chen. GBPR: Group preference based bayesian personalized ranking for one-class collaborative filtering. In IJCAI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The Adaptive Web, pages 325--341. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: an open architecture for collaborative filtering of netnews. In CSCW, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Shan, J. Kattge, P. B. Reich, A. Banerjee, F. Schrodt, and M. Reichstein. Gap filling in the plant kingdom trait prediction using hierarchical probabilistic matrix factorization. In ICML, 2012.Google ScholarGoogle Scholar
  37. Y. Shen and R. Jin. Learning personalGoogle ScholarGoogle Scholar
  38. social latent factor model for social recommendation. In KDD, 2012.Google ScholarGoogle Scholar
  39. A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In KDD, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Srebro, J. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In NIPS, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Wang, Y. Zhang, C. Posse, and A. Bhasin. Is it time for a career switch? In WWW, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. E. Zhong, W. Fan, and Q. Yang. Contextual collaborative filtering via hierarchical matrix factorization. In SDM, 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Modeling contextual agreement in preferences

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          WWW '14: Proceedings of the 23rd international conference on World wide web
          April 2014
          926 pages
          ISBN:9781450327442
          DOI:10.1145/2566486

          Copyright © 2014 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 April 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          WWW '14 Paper Acceptance Rate84of645submissions,13%Overall Acceptance Rate1,899of8,196submissions,23%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader