skip to main content
10.1145/2578153.2578161acmconferencesArticle/Chapter ViewAbstractPublication PagesetraConference Proceedingsconference-collections
research-article

On relationships between fixation identification algorithms and fractal box counting methods

Published:26 March 2014Publication History

ABSTRACT

Fixation identification algorithms facilitate data comprehension and provide analytical convenience in eye-tracking analysis. However, current fixation algorithms for eye-tracking analysis are heavily dependent on parameter choices, leading to instabilities in results and incompleteness in reporting.

This work examines the nature of human scanning patterns during complex scene viewing. We show that standard implementations of the commonly used distance-dispersion algorithm for fixation identification are functionally equivalent to greedy spatiotemporal tiling. We show that modeling the number of fixations as a function of tiling size leads to a measure of fractal dimensionality through box counting. We apply this technique to examine scale-free gaze behaviors in toddlers and adults looking at images of faces and blocks, as well as large number of adults looking at movies or static images.

The distributional aspects of the number of fixations may suggest a fractal structure to gaze patterns in free scanning and imply that the incompleteness of standard algorithms may be due to the scale-free behaviors of the underlying scanning distributions. We discuss the nature of this hypothesis, its limitations, and offer directions for future work.

References

  1. Aks, D. J., Zelinsky, G. J., and Sprott, J. C. 2002. Memory across eye-movements: 1/f dynamic in visual search. Nonlinear Dynamics, Psychology, and Life Sciences 6, 1, 1--25.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bazell, D., and Desert, F. X. 1988. Fractal structure of interstellar cirrus. Astrophysical Journal 333, 353--358.Google ScholarGoogle ScholarCross RefCross Ref
  3. Boccignone, G., and Ferraro, M. 2004. Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications 331, 1-2, 207--218.Google ScholarGoogle Scholar
  4. Brockmann, D., and Geisel, T. 1999. Are human scanpaths levy flights? artificial neural networks. ICANN 99. Ninth International Conference.Google ScholarGoogle Scholar
  5. Brockmann, D., and Geisel, T. 2000. The ecology of gaze shifts. Neurocomputing 32, 33, 643--650.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Burton, G. J., and Moorhead, I. R. 1987. Color and spatial structure in natural scenes. Applied Optics 26, 1, 157--170.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dorr, M., Martinetz, T., Gegenfurtner, K., and Barth, E. 2010. Variability of eye movements when viewing dynamic natural scenes. Journal of Vision 10, 10, 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  8. Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., Buldyrev, S. V., da Luz, M. G. E., Raposo, E. P., Stanley, H. E., and Viswanathan, G. M. 2007. Revisiting lvy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044--1048.Google ScholarGoogle ScholarCross RefCross Ref
  9. Falconer, K., Ed. 2003. Fractal Geometry - Mathematical Foundations and Applications (2nd ed.), England: John Wiley & Sons, Ltd, Western Sussex.Google ScholarGoogle Scholar
  10. Faloutsos, M., Faloutsos, P., and Faloutsos, C. 1999. On power-law relationships of the internet topology. Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Field, D. J. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 12, 2379--2394.Google ScholarGoogle ScholarCross RefCross Ref
  12. Klinkenberg, B. 1994. A review of methods used to determine the fractal dimension of linear features. Mathematical Geology 26, 1, 23--46.Google ScholarGoogle ScholarCross RefCross Ref
  13. Lebedev, S., Gelder, P. V., and Tsui, W. H. 1996. Square-root relations between main saccadic parameters. Invest. Oph-thalmol. Vis. Sci. 37, 13, 2750--2758.Google ScholarGoogle Scholar
  14. Liang, J.-R., Moshel, S., Zivotofsky, A. Z., Caspi, A., Engbert, R., Kliegl, R., and Havlin, S. 2005. Scaling of horizontal and vertical fixational eye movements. Phys. Rev. E 71 (Mar), 031909.Google ScholarGoogle ScholarCross RefCross Ref
  15. Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J. 1984. Fractal character of fracture surfaces of metals. Nature 308, 5961, 721--722.Google ScholarGoogle Scholar
  16. Mandelbrot, B. B. 1967. How long is the coast of britain? statistical self-similarity and fractional dimension. Science 156, 3775, 636.Google ScholarGoogle ScholarCross RefCross Ref
  17. Mandelbrot, B. B. 1975. Stochastic models for the earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proceedings of the National Academy of Sciences of the United States of America 72, 10, 3825--3828.Google ScholarGoogle ScholarCross RefCross Ref
  18. Mandelbrot, B. B. 1983. The fractal geometry of nature, revised and enlarged edition ed. W. H. Freeman and Co., New York.Google ScholarGoogle Scholar
  19. Mandelbrot, B. B. 1999. A fractal walk down wall street. Scientific American, 70--73.Google ScholarGoogle Scholar
  20. Martinez-Conde, S., and Macknik, S. L. 2013. Fixational eye movements across vertebrates: Comparative dynamics, physiology, and perception. Journal of Vision 13, 12.Google ScholarGoogle Scholar
  21. Martinez-Conde, S., Macknick, S. L., Troncoso, X. G., and Hubel, D. H. 2009. Microsaccades: a neurophysiological analysis. Trends in Neurosciences 32, 5.Google ScholarGoogle ScholarCross RefCross Ref
  22. Rodrguez-Iturbe, I., and Rinaldo, A. 1997. Fractal River Basins: Chance and Self-Organization. Cambridge University Press.Google ScholarGoogle Scholar
  23. Salvucci, D. D., and Goldberg, J. H. 2000. Identifying fixations and saccades in eye-tracking protocols. Proceedings of the 2000 symposium on Eye tracking research & applications, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schroeder, M. 1999. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, 7th printing ed. W. H. Freeman and Company, New York.Google ScholarGoogle Scholar
  25. Schuster, F. L., and Levandowsky, M. 1996. Chemosensory responses of acanthamoeba castellanii: visual analysis of random movement and responses to chemical signals. The Journal of Eukaryotic Microbiology 43, 2, 150--158.Google ScholarGoogle ScholarCross RefCross Ref
  26. Shelhamer, M., and Joiner, W. M. 2003. Saccades exhibit abrupt transition between reactive and predictive, predictive saccade sequences have long-term correlations. J Neurophysiol 90, 4, 2763--2769.Google ScholarGoogle ScholarCross RefCross Ref
  27. Shelhamer, M. 2005. Phase transition between reactive and predictive eye movements is confirmed with nonlinear forecasting and surrogates. Neurocomputing 65, 66, 769--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shelhamer, M. 2005. Sequences of predictive eye movements form a fractional brownian series implications for self-organized criticality in the oculomotor system. Biological Cybernetics 93, 1, 43--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shelhamer, M. 2005. Sequences of predictive saccades are correlated over a span of 2 s and produce a fractal time series. J Neurophysiol 93, 4, 2002--2011.Google ScholarGoogle ScholarCross RefCross Ref
  30. Shic, F., Chawarska, K., and Scassellati, B. 2008. The amorphous fixation measure revisited: with applications to autism. In 30th Annual Meeting of the Cognitive Science Society.Google ScholarGoogle Scholar
  31. Shic, F., Scassellati, B., and Chawarska, K. 2008. The incomplete fixation measure. In Proceedings of the 2008 symposium on Eye tracking research & applications, ACM, New York, NY, USA, ETRA '08, 111--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Taylor, R. P., Micolich, A. P., and Jonas, D. 1999. Fractal analysis of pollock's drip paintings. Nature 399, 6735, 422.Google ScholarGoogle ScholarCross RefCross Ref
  33. Tolhurst, D. J., Tadmor, Y., and Chao, T. 1992. Amplitude spectra of natural images. Ophthalmic and Physiological Optics 12, 2, 229--232.Google ScholarGoogle ScholarCross RefCross Ref
  34. Torralba, A., and Oliva, A. 2003. Statistics of natural image categories. Network: Computation in Neural Systems 14, 3, 391--412.Google ScholarGoogle ScholarCross RefCross Ref
  35. Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., and Stanley, H. E. 1996. Lévy flight search patterns of wandering albatrosses. Nature 381, 6581, 413--415.Google ScholarGoogle Scholar
  36. Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. 1999. Optimizing the success of random searches. Nature 401, 6756, 911--914.Google ScholarGoogle Scholar
  37. Wass, S. V., Smith, T. J., and Johnson, M. H. 2013. Parsing eye-tracking data of variable quality to provide accurate fixation duration estimates in infants and adults. Behavior Research Methods 45, 1, 229--250.Google ScholarGoogle ScholarCross RefCross Ref
  38. Wong, P., Howard, J., and Lin, J. S. 1986. Surface roughening and the fractal nature of rocks. Physical Review Letters 57, 5, 637--640.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. On relationships between fixation identification algorithms and fractal box counting methods

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ETRA '14: Proceedings of the Symposium on Eye Tracking Research and Applications
      March 2014
      394 pages
      ISBN:9781450327510
      DOI:10.1145/2578153

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 March 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate69of137submissions,50%

      Upcoming Conference

      ETRA '24
      The 2024 Symposium on Eye Tracking Research and Applications
      June 4 - 7, 2024
      Glasgow , United Kingdom

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader