skip to main content
10.1145/2582112.2582133acmotherconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
tutorial

Efficient Random-Walk Methods for Approximating Polytope Volume

Published: 08 June 2014 Publication History

Abstract

We experimentally study the fundamental problem of computing the volume of a convex polytope given as an intersection of linear inequalities. We implement and evaluate practical randomized algorithms for accurately approximating the polytope's volume in high dimensions (e.g. one hundred). To carry out this efficiently we experimentally correlate the effect of parameters, such as random walk length and number of sample points, on accuracy and runtime. Moreover, we exploit the problem's geometry by implementing an iterative rounding procedure, computing partial generations of random points and designing fast polytope boundary oracles. Our publicly available code is significantly faster than exact computation and more accurate than existing approximation methods. We provide volume approximations for the Birkhoff polytopes B11, …, B15, whereas exact methods have only computed that of B10.

References

[1]
P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation via coresets. In Combinatorial and Computational Geometry, MSRI, pages 1--30. University Press, 2005.
[2]
A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM, 51:117--122, 2008.
[3]
S. Arya, G. Dias da Fonseca, and D.M. Mount. Optimal area-sensitive bounds for polytope approximation. In ACM Symp. on Comp. Geometry, pages 363--372, 2012.
[4]
R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search. IEEE Trans. Pattern Analysis & Machine Intelligence, 33(2):266--278, 2011.
[5]
M. Beck and D. Pixton. The Ehrhart polynomial of the Birkhoff polytope. Discrete & Computational Geometry, 30(4):623--637, 2003.
[6]
D. Bertsimas and S. Vempala. Solving convex programs by random walks. J. ACM, 51(4):540--556, 2004.
[7]
U. Betke and M. Henk. Approximating the volume of convex bodies. Discrete & Computational Geometry, 10(1):15--21, 1993.
[8]
B. Büeler and A. Enge. VINCI. http://www.math.u-bordeaux1.fr/~aenge/index.php?category=software&page=vinci.
[9]
B. Büeler, A. Enge, and K. Fukuda. Exact volume computation for polytopes: A practical study. In Polytopes: Combinatorics and Computation, volume 29 of Oberwolfach Seminars, pages 131--154. Birkhäuser, 2000.
[10]
E. Canfield and B. McKay. The asymptotic volume of the birkhoff polytope. Online Journal of Analytic Combinatorics, 4(0), 2009.
[11]
CGAL: Computational geometry algorithms library. http://www.cgal.org.
[12]
B. Cousins and S. Vempala. A cubic algorithm for computing gaussian volume. In SODA, pages 1215--1228, 2014.
[13]
B. Cousins and S. Vempala. A Matlab implementation for volume approximation of convex bodies, 2014. http://www.cc.gatech.edu/~bcousins/Volume.html.
[14]
J.A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu. Software for exact integration of polynomials over polyhedra. Comput. Geom.: Theory Appl., 46(3):232--252, April 2013.
[15]
M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM, 38(1):1--17, 1991.
[16]
M.E. Dyer and A.M. Frieze. On the complexity of computing the volume of a polyhedron. SIAM J. Comput., 17(5):967--974, 1988.
[17]
G. Elekes. A geometric inequality and the complexity of computing volume. Discrete & Computational Geometry, 1:289--292, 1986.
[18]
K. Fischer, B. Gärtner, T. Herrmann, M. Hoffmann, and S. Schönherr. Bounding volumes. In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition, 2013.
[19]
K. Fischer, B. Gärtner, S. Schönherr, and F. Wessendorp. Linear and quadratic programming solver. In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition, 2013.
[20]
G. Guennebaud, B. Jacob, et al. Eigen v3, 2010. http://eigen.tuxfamily.org.
[21]
U. Jaekel. A Monte Carlo method for high-dimensional volume estimation and application to polytopes. Procedia Computer Science, 4:1403--1411, 2011.
[22]
R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O*(n5) volume algorithm for convex bodies. Rand. Struct. Algor., 11:1--50, 1997.
[23]
D.E. Kaufman and R.L. Smith. Direction choice for accelerated convergence in hit-and-run sampling. Operations Research, 46:84--95, 1998.
[24]
L.G. Khachiyan. Rounding of polytopes in the real number model of computation. Math. Oper. Res., 21(2):307--320, 1996.
[25]
S. Liu, J. Zhang, and B. Zhu. Volume computation using a direct Monte Carlo method. In G. Lin, editor, Computing and Combinatorics, volume 4598 of LNCS, pages 198--209. Springer, 2007.
[26]
L. Lovász and I. Deák. Computational results of an O(n4) volume algorithm. European J. Operational Research, 216(1):152--161, 2012.
[27]
L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4):985--1005, 2006.
[28]
L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O*(n4) volume algorithm. J. Comp. Syst. Sci., 72(2):392--417, 2006.
[29]
J. Maurer. Boost: C++ Libraries. Chapter 23. Boost Random. www.boost.org/doc/libs/1_54_0/doc/html/boost$_$random.html.
[30]
D.M. Mount and S. Arya. ANN: A library for approximate nearest neighbor searching, 1997.
[31]
M. Muja. Flann: Fast library for approximate nearest neighbors, 2011. http://mloss.org/software/view/143/.
[32]
M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In International Conference on Computer Vision Theory and Application VISSAPP'09), pages 331--340. INSTICC Press, 2009.
[33]
E.A. Ramos. On range reporting, ray shooting and k-level construction. In Proc. Symposium on Computational Geometry, pages 390--399. ACM, 1999.
[34]
M. Simonovits. How to compute the volume in high dimension? Math. Program., pages 337--374, 2003.
[35]
R.L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Operations Research, 32(6):1296--1308, 1984.
[36]
H. Tangelder and A. Fabri. dD spatial searching. In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition, 2013.
[37]
Y. Zheng and K. Yamane. Ray-shooting algorithms for robotics. IEEE Trans. Automation Science & Engineering, 10:862--874, 2013.

Cited By

View all
  • (2024)The diameter of the Birkhoff polytopeSpecial Matrices10.1515/spma-2023-011312:1Online publication date: 24-Feb-2024
  • (2024)Aggregation of building predictive energy flexibility in smart microgridInternational Journal of Electrical Power & Energy Systems10.1016/j.ijepes.2024.110073160(110073)Online publication date: Sep-2024
  • (2024)On the geometry of the Birkhoff polytope I: the operator $$\ell ^p_n$$-normsActa Scientiarum Mathematicarum10.1007/s44146-024-00152-8Online publication date: 20-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SOCG'14: Proceedings of the thirtieth annual symposium on Computational geometry
June 2014
588 pages
ISBN:9781450325943
DOI:10.1145/2582112
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Birkhoff polytopes
  2. algorithm engineering
  3. general dimension
  4. polytope oracle
  5. random walk
  6. software
  7. volume approximation

Qualifiers

  • Tutorial
  • Research
  • Refereed limited

Conference

SOCG'14

Acceptance Rates

SOCG'14 Paper Acceptance Rate 60 of 175 submissions, 34%;
Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)The diameter of the Birkhoff polytopeSpecial Matrices10.1515/spma-2023-011312:1Online publication date: 24-Feb-2024
  • (2024)Aggregation of building predictive energy flexibility in smart microgridInternational Journal of Electrical Power & Energy Systems10.1016/j.ijepes.2024.110073160(110073)Online publication date: Sep-2024
  • (2024)On the geometry of the Birkhoff polytope I: the operator $$\ell ^p_n$$-normsActa Scientiarum Mathematicarum10.1007/s44146-024-00152-8Online publication date: 20-Jul-2024
  • (2024)A Mathematical Study of the Braess’s Paradox Within a Network Comprising Four Nodes, Five Edges, and Linear Time FunctionsOptimization, Discrete Mathematics and Applications to Data Sciences10.1007/978-3-031-78369-2_12(223-232)Online publication date: 29-Oct-2024
  • (2023)Convergence of Gibbs Sampling: Coordinate Hit-and-Run Mixes FastDiscrete & Computational Geometry10.1007/s00454-023-00497-x70:2(406-425)Online publication date: 25-Apr-2023
  • (2023)Novel matrix hit and run for sampling polytopes and its GPU implementationComputational Statistics10.1007/s00180-023-01411-yOnline publication date: 19-Sep-2023
  • (2022)Probabilistic Analysis of Network Availability2022 IEEE 30th International Conference on Network Protocols (ICNP)10.1109/ICNP55882.2022.9940438(1-11)Online publication date: 30-Oct-2022
  • (2022)Unboundedness of Linear Regions of Deep ReLU Neural NetworksDatabase and Expert Systems Applications - DEXA 2022 Workshops10.1007/978-3-031-14343-4_1(3-10)Online publication date: 15-Aug-2022
  • (2019)Percentage porosity computation of three-dimensional non-convex porous geometries using the direct Monte Carlo simulationEngineering with Computers10.1007/s00366-019-00866-2Online publication date: 25-Sep-2019
  • (2019)A Machine Learning Framework for Volume PredictionAnalysis of Experimental Algorithms10.1007/978-3-030-34029-2_27(408-423)Online publication date: 14-Nov-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media