skip to main content
10.1145/258533.258664acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article
Free Access

An interruptible algorithm for perfect sampling via Markov chains

Published:04 May 1997Publication History
First page image

References

  1. 1.Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Arner. Math. Monthly 93 333-348.Google ScholarGoogle ScholarCross RefCross Ref
  2. 2.Aldous, D. and Diacoms, P. (1987). Strong uniform times and finite random walks. Advances in Appl. Math. 8 69-97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3.Aldous, D. and Fill, J. A. (1996). Reversible Markov Chains and Random Walks on Graphs. Book in preparation. First draft of manuscript available via http://~, star. berkeley, edu/usrrs/aldous.Google ScholarGoogle Scholar
  4. 4.Asmussen, S., Glynn, P. W., and Thoriason, H. (1992). Stationary detection in the initial transient problem. A CM Thins. Modelling and Computer Sire. 2 130-157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. 5.Besag, J. E. (1986). On the statistical analysis of dirty pictures. J. Royal Statist. $oc. B 48 259-302.Google ScholarGoogle Scholar
  6. 6.Besag, J. E. and Clifford, P. (1989). Generalized Monte Carlo significance tests. Biometrika 76 633-642.Google ScholarGoogle ScholarCross RefCross Ref
  7. 7.Besag, J. E. and Clifford, P. (1991). Sequential Monte Carlo p-values. Biometrika 78 301-304.Google ScholarGoogle ScholarCross RefCross Ref
  8. 8.Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995). Bayesian computation and stochastic systems. Statistical Science 10 3-66.Google ScholarGoogle ScholarCross RefCross Ref
  9. 9.Borovkov, A. A. and Foss, S. G. (1992). Stochastically recursive sequences and their generalizations. Siberian Adv. Math. 2 16--81.Google ScholarGoogle Scholar
  10. 10.Borovkov, A. A. and Foss, S. G. (1994). Two ergodicity criteria for stochastically recursive sequences. Acta Applic. Math. 34 125-134.Google ScholarGoogle ScholarCross RefCross Ref
  11. 11.Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, California.Google ScholarGoogle Scholar
  12. 12.Diaconis, P. and Fill, J. A. (1990). Strong stationary times via a new form of duality. Ann. Probab. 18 1483- 1522.Google ScholarGoogle Scholar
  13. 13.Diaconis, P. and Saloff-Coste, L. (1995). What do we know about the Metropolis algorithm? In Symposium on the Theory of Computing, 112-129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14.Diaconis, P. and Saloff-Coste, L. (1995). Geometry and randomness. Unpublished lecture notes.Google ScholarGoogle Scholar
  15. 15.Fill, J. A. (1996). The move-to-front rule: a case sutdy for two exact sampling algorithms. Technical Report ~566, Department of Mathematical Sciences, The Johns Hopkins University.Google ScholarGoogle Scholar
  16. 16.Fill, J. A. and Mac. hida, M. (1996). Stochastic ordering on posets. Unpublished notes.Google ScholarGoogle Scholar
  17. 17.Fill, J. A. and Machida, M. (1996). Duality relations for Markov chains on partially ordered state spaces. Unpublished notes.Google ScholarGoogle Scholar
  18. 18.Foss, S. G. (1983). On ergoclicity conditions in multiserver queues. Siberian Math. J. 24 168-175.Google ScholarGoogle Scholar
  19. 19.Foss, S., Tweedie, R. L., and Corcoran J. (1997). Sireulating the invariant measures of Markov chains using backward coupling at regeneration times. Preprint.Google ScholarGoogle Scholar
  20. 20.Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE 7ka~acti~ on Pattern Analysis and Machine Intelligence, PAMI-6(6).Google ScholarGoogle Scholar
  21. 21.H/iggstr6m, O., van Lieshout, M. N. M., and Mzller, J. (1996). Characterisation results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Preprint.Google ScholarGoogle Scholar
  22. 22.Higgst~m, O. and Nelander, K. (1997). Exact sampiing from anti-monotone systems. Preprint.Google ScholarGoogle Scholar
  23. 23.Kamae, T., Krengel, U., and O'Brien, G. L. (1977). Stochastic inequalities on partially ordered state spaces. Ann. Probab. 5 899-912.Google ScholarGoogle ScholarCross RefCross Ref
  24. 24.Kendall, W. S. (1996). Perfect simulation for the areainteraction point process, in Proceedings of the Symposlum on Probability towards the Year ~000 (eds.: L. Accardi and C. C. Heyde), Springer, to appear.Google ScholarGoogle Scholar
  25. 25.Kendall, W. S. (1996). On some weighted Boolean models. Preprint 295, Department of Statistics, Warwick University.Google ScholarGoogle Scholar
  26. 26.Liggett, T. (1985). interacting Particle Systems. Springer-Verlag, New York.Google ScholarGoogle Scholar
  27. 27.Lov/sz, L. and Winkler, P. (1995). Exact mixing in an unknown Markov chain. Electronic J. Combinatorics 2 #ms.Google ScholarGoogle Scholar
  28. 28.Lurid, R. B., Wilson, D. B., Foss, S., and Tweedie, R. L. (1997). Exact and approximate simulation of the invariant measures of Markov chains. Preprint.Google ScholarGoogle Scholar
  29. 29.Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms 9 223-252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30.Ross, S. (1994). A First Course in Probability, 4th ed. Macmillan, New York.Google ScholarGoogle Scholar
  31. 31.Sinclair, A. (1993). Al~orithms/or Random Generation and Counting: A Markov Chain Approach. Birkh/iuser, BostorL Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. 32.Stanley, R. r. (1986). Enumerative Combinatorics, volume 1. Wadsworth & Brooks/Cole, Monterey, California. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33.Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Matlt Statist 36 423-- 439.Google ScholarGoogle Scholar
  34. 34.Wilson, D. B. and Propp, J. G. (1997). How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. Journal of Algorithms, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35.Wilson, D. B. (1995). Personal communication.Google ScholarGoogle Scholar

Index Terms

  1. An interruptible algorithm for perfect sampling via Markov chains

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            STOC '97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing
            May 1997
            752 pages
            ISBN:0897918886
            DOI:10.1145/258533

            Copyright © 1997 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 4 May 1997

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            STOC '97 Paper Acceptance Rate75of211submissions,36%Overall Acceptance Rate1,469of4,586submissions,32%

            Upcoming Conference

            STOC '24
            56th Annual ACM Symposium on Theory of Computing (STOC 2024)
            June 24 - 28, 2024
            Vancouver , BC , Canada

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader