skip to main content
10.1145/2591796.2591862acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Satisfiability threshold for random regular NAE-SAT

Authors Info & Claims
Published:31 May 2014Publication History

ABSTRACT

We consider the random regular k-nae-sat problem with n variables each appearing in exactly d clauses. For all k exceeding an absolute constant k0, we establish explicitly the satisfiability threshold d*d*(k). We prove that for d < d* the problem is satisfiable with high probability while for d > d* the problem is unsatisfiable with high probability. If the threshold d* lands exactly on an integer, we show that the problem is satisfiable with probability bounded away from both zero and one. This is the first result to locate the exact satisfiability threshold in a random constraint satisfaction problem exhibiting the condensation phenomenon identified by Krzakał a et al. (2007). Our proof verifies the onestep replica symmetry breaking formalism for this model. We expect our methods to be applicable to a broad range of random constraint satisfaction problems and combinatorial problems on random graphs.

Skip Supplemental Material Section

Supplemental Material

p814-sidebyside.mp4

mp4

206 MB

References

  1. D. Achlioptas and C. Moore. Random k-sat: two moments suffice to cross a sharp threshold. SIAM J. Comput., 36(3):740--762 (electronic), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard optimization problems. Nature, 435(7043):759--764, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. Achlioptas and Y. Peres. The threshold for random k-sat is 2k log 2 --- O(k). J. Amer. Math. Soc., 17(4):947--973 (electronic), 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. Achlioptas and F. Ricci-Tersenghi. Random formulas have frozen variables. SIAM J. Comput., 39(1):260--280, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Aurell, U. Gordon, and S. Kirkpatrick. Comparing beliefs, surveys, and random walks. In NIPS, 2004.Google ScholarGoogle Scholar
  6. A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: an algorithm for satisfiability. Random Struct. Algor., 27(2):201--226, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Braunstein and R. Zecchina. Survey propagation as local equilibrium equations. J. Stat. Mech. Theory E., 2004(06):P06007, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. Castellani, V. Napolano, F. Ricci-Tersenghi, and R. Zecchina. Bicolouring random hypergraphs. J. Phys. A, 36(43):11037--11053, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  9. V. Chvátal and B. Reed. Mick gets some (the odds are on his side). In Proc. IEEE Symp. (FOCS), pages 620--627, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Coja-Oghlan. Random regular k-sat. Preprint at http://arxiv.org/abs/1310.2728v1, 2013.Google ScholarGoogle Scholar
  11. A. Coja-Oghlan. The asymptotic k-sat threshold. In Proc. ACM Symp. (STOC), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Coja-Oghlan and K. Panagiotou. Catching the k-naesat threshold. In Proc. ACM Symp. (STOC), pages 899--907. ACM, New York, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Coja-Oghlan and K. Panagiotou. Going after the k-sat threshold. In Proc. ACM Symp. (STOC), pages 705--714, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Coja-Oghlan and D. Vilenchik. Chasing the k-colorability threshold. In Proc. IEEE Symp. (FOCS), pages 380--389, Oct 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Coja-Oghlan and L. Zdeborová. The condensation transition in random hypergraph 2-coloring. In Proc. ACM-SIAM Symp. (SODA), pages 241--250. SIAM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. Dall'Asta, A. Ramezanpour, and R. Zecchina. Entropy landscape and non-Gibbs solutions in constraint satisfaction problems. Phys. Rev. E (3), 77(3):031118, 16, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Dembo, A. Montanari, A. Sly, and N. Sun. The replica symmetric solution for Potts models on d-regular graphs. Comm. Math. Phys., 2014.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Dembo, A. Montanari, and N. Sun. Factor models on locally tree-like graphs. Ann. Probab., 41(6):4162--4213, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Ding, A. Sly, and N. Sun. Maximum independent sets on random regular graphs. Preprint at http://arxiv.org/abs/1310.4787, 2013.Google ScholarGoogle Scholar
  20. W. Fernandez de la Vega. Random 2-sat: results and problems. Theoretical Computer Science, 265(1):131--146, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer. Math. Soc., 12(4):1017--1054, 1999. With an appendix by Jean Bourgain.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Galanis, D. Štefankovič, and E. Vigoda. Inapproximability for antiferromagnetic spin systems in the tree non-uniqueness region. In Proc. ACM Symp. (STOC), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Goerdt. A threshold for unsatisfiability. J. Comput. System Sci., 53(3):469--486, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Janson, T. Łuczak, and A. Rucinski. Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  25. F. Krzakała, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction problems. P. Natl. Acad. Sci., 104(25):10318--10323, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  26. E. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey propagation and its generalizations. J. ACM, 54(4):Art. 17, 41, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. E. Maneva and A. Sinclair. On the satisfiability threshold and clustering of solutions of random 3-sat formulas. Theoret. Comput. Sci., 407(1-3):359--369, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Mézard and A. Montanari. Information, physics, and computation. Oxford Graduate Texts. Oxford University Press, Oxford, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Mézard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfiability problem. Phys. Rev. Lett., 94(19):197205, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. Mézard and G. Parisi. Replicas and optimization. Journal de Physique Lettres, 46(17):771--778, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Mézard and G. Parisi. The Bethe lattice spin glass revisited. Eur. Phys. J. B, 20(2):217--233, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Mézard and G. Parisi. The cavity method at zero temperature. J. Stat. Phys., 111(1-2):1--34, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiability problems. Science, 297(5582):812--815, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Mézard, F. Ricci-Tersenghi, and R. Zecchina. Two solutions to diluted p-spin models and xorsat problems. J. Stat. Phys., 111(3-4):505--533, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Molloy and R. Restrepo. Frozen variables in random boolean constraint satisfaction problems. In Proc. ACM Symp. (SODA), pages 1306--1318. SIAM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining computational complexity from characteristic "phase transitions". Nature, 400(6740):133--137, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  37. A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Clusters of solutions and replica symmetry breaking in random k-satisfiability. J. Stat. Mech. Theory E., 2008(04):P04004, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  38. B. Pittel and G. B. Sorkin. The satisfiability threshold for k-xorsat. Preprint at http://arxiv.org/abs/1212.1905, 2012.Google ScholarGoogle Scholar
  39. R. W. Robinson and N. C. Wormald. Almost all cubic graphs are Hamiltonian. Random Struct. Algor., 3(2):117--125, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. W. Robinson and N. C. Wormald. Almost all regular graphs are Hamiltonian. Random Struct. Algor., 5(2):363--374, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. C. Wormald. Models of random regular graphs. In Surveys in combinatorics, 1999 (Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages 239--298. Cambridge Univ. Press, Cambridge, 1999.Google ScholarGoogle Scholar

Index Terms

  1. Satisfiability threshold for random regular NAE-SAT

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '14: Proceedings of the forty-sixth annual ACM symposium on Theory of computing
      May 2014
      984 pages
      ISBN:9781450327107
      DOI:10.1145/2591796

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 31 May 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '14 Paper Acceptance Rate91of319submissions,29%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader