skip to main content
10.1145/2600176.2600180acmotherconferencesArticle/Chapter ViewAbstractPublication PageshotsosConference Proceedingsconference-collections
research-article

Characterizing the power of moving target defense via cyber epidemic dynamics

Published: 08 April 2014 Publication History

Abstract

Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and quantitative characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.

References

[1]
S. Antonatos, P. Akritidis, E. Markatos, and K. Anagnostakis. Defending against hitlist worms using network address space randomization. In Proc. (WORM'05), pages 30--40.
[2]
M. Atighetchi, P. Pal, F. Webber, and C. Jones. Adaptive use of network-centric mechanisms in cyber-defense. In IEEE Symposium on Object-Oriented Real-Time Distributed Computing, 2003, pages 183--192, 2003.
[3]
A. Avizienis. The n-version approach to fault-tolerant software. IEEE TSE, (12):1491--1501, 1985.
[4]
E. Barrantes, D. Ackley, S. Forrest, and D. Stefanović. Randomized instruction set emulation. ACM TISSEC, 8(1):3--40, 2005.
[5]
E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic, and D. Zovi. Randomized instruction set emulation to disrupt binary code injection attacks. In Proc. ACM CCS'03, pp 281--289.
[6]
S. Bhatkar, D. DuVarney, and R. Sekar. Address obfuscation: An efficient approach to combat a board range of memory error exploits. In USENIX Security Symposium, 2003.
[7]
S. Boyd, G. Kc, M. Locasto, A. Keromytis, and V. Prevelakis. On the general applicability of instruction-set randomization. IEEE TDSC, 7(3):255--270, July 2010.
[8]
D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic optimization. In Proc. CGO'03, pages 265--275.
[9]
J. Cai, V. Yegneswaran, C. Alfeld, and P. Barford. An attacker-defender game for honeynets. In COCOON'09, pp 7--16.
[10]
D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic thresholds in real networks. ACM TISSEC, 10(4):1--26, 2008.
[11]
F. Cohen. Operating system protection through program evolution. Comput. Secur., 12(6):565--584, October 1993.
[12]
Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO'89, pages 307--315.
[13]
E. B. Dynkin. Markov processes. Springer, Berlin, 1965.
[14]
S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In Proc. HotOS-VI.
[15]
A. Ganesh, L. Massoulie, and D. Towsley. The effect of network topology on the spread of epidemics. In Proc. IEEE Infocom 2005.
[16]
C. Giuffrida, A. Kuijsten, and A. Tanenbaum. Enhanced operating system security through efficient and fine-grained address space randomization. In Proc. USENIX Security'12.
[17]
A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and signature schemes. In Proc. ACM CCS'97.
[18]
J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. Ilr: Where'd my gadgets go? In Proc. IEEE Symposium on Security and Privacy 2012.
[19]
A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: transparent code randomization for just-in-time compilers. In Proc. ACM CCS'13.
[20]
T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler, C. Wimmer, and M. Franz. Diversifying the Software Stack Using Randomized NOP Insertion In S. Jajodia, A. Ghosh, V. Swarup, C. Wang, and X. Wang, editors, Moving Target Defense, pages 77--98.
[21]
J. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random host mutation: Transparent moving target defense using software defined networking. In Proc. HotSDN'12.
[22]
G. Kc, A. Keromytis, and V. Prevelakis. Countering code-injection attacks with instruction-set randomization. In Proc. ACM CCS'03.
[23]
Eric Keller, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford. Live migration of an entire network (and its hosts). In Proc. HotNets'12.
[24]
J. Kephart and S. White. Directed-graph epidemiological models of computer viruses. In IEEE Symposium on Security and Privacy'91.
[25]
J. Kephart and S. White. Measuring and modeling computer virus prevalence. In IEEE Symposium on Security and Privacy'93.
[26]
W. Kermack and A. McKendrick. A contribution to the mathematical theory of epidemics. Proc. of Roy. Soc. Lond. A, 115:700--721, 1927.
[27]
D. Kewley, R. Fink, J. Lowry, and M. Dean. Dynamic approaches to thwart adversary intelligence gathering. In Proc. DISCEX'01.
[28]
V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shepherding. In Proc. USENIX Security'02.
[29]
D. Liberzon. Switching in Systems and Control. Birkhauser, Boston, MA, 2003.
[30]
C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumentation. In Proc. PLDI'05.
[31]
P. Manadhata. Game theoretic approaches to attack surface shifting. In Moving Target Defense II, pages 1--13. 2013.
[32]
M. Mariton. Jump linear systems in automatic control. Marcel dekker, New York, 1990.
[33]
A. McKendrick. Applications of mathematics to medical problems. Proc. of Edin. Math. Soceity, 14:98--130, 1926.
[34]
N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary instrumentation. In PLDI'07.
[35]
A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis. Asist: Architectural support for instruction set randomization. In ACM CCS'13.
[36]
V. Pappas, M. Polychronakis, and A. Keromytis. Smashing the gadgets: Hindering return-oriented programming using in-place code randomization. In IEEE Symposium on Security and Privacy'12.
[37]
R. Pastor-Satorras and A. Vespignani. Epidemic dynamics in finite size scale-free networks. Physical Review E, 65:035108, 2002.
[38]
B. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos. Virus propagation on time-varying networks: Theory and immunization algorithms. In ECML/PKDD (3), pages 99--114, 2010.
[39]
M. Rami, V. Bokharaie, O. Mason, and F. Wirth. Stability criteria for sis epidemiological models under switching policies, 2013.
[40]
A. Shamir. How to share a secret. CACM, 22:612--613, 1979.
[41]
A. Sovarel, D. Evans, and N. Paul. Where's the feeb? the effectiveness of instruction set randomization. In Pro. USENIX Security'05.
[42]
The PaX Team. http://pax.grsecurity.net/docs/aslr.txt.
[43]
G. Teschl. Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, 2010.
[44]
P. Van Mieghem, J. Omic, and R. Kooij. Virus spread in networks. IEEE/ACM ToN, 17(1):1--14, February 2009.
[45]
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic spreading in real networks: An eigenvalue viewpoint. In IEEE SRDS'03, pages 25--34.
[46]
R. Wartell, V. Mohan, K. Hamlen, and Z. Lin. Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code. In ACM CCS'12
[47]
Y. Weiss and E. Barrantes. Known/chosen key attacks against software instruction set randomization. In Proc. ACSAC'06.
[48]
D. William, Z. Jiang, H. Jamjoom, and H. Weatherspoon. Virtualwires for live migrating virtual networks across clouds (IBM TR rc25378, 2013).
[49]
S. Xu. Cybersecurity dynamics. In HotSoS'14 (poster).
[50]
S. Xu, W. Lu, L. Xu, and Z. Zhan. Adaptive epidemic dynamics in networks: Thresholds and control. ACM TAAS, 8(4):19, 2014.
[51]
S. Xu, W. Lu, and L. Xu. Push- and pull-based epidemic spreading in networks: Thresholds and deeper insights. ACM TAAS, 7(3):32, 2012.
[52]
S. Xu, W. Lu, and Z. Zhan. A stochastic model of multivirus dynamics. IEEE TDSC, 9(1):30--45, 2012.
[53]
J. Yackoski, H. Bullen, X. Yu, and J. Li. Applying self-shielding dynamics to the network architecture. In Moving Target Defense II, pp 97--115. 2013.
[54]
Q. Zhu and T. Basar. Game-theoretic approach to feedback-driven multi-stage moving target defense. In Porc. GameSec'13, pages 246--263.

Cited By

View all
  • (2025)Characterizing the Evolution of Psychological Factors Exploited by Malicious EmailsScience of Cyber Security10.1007/978-981-96-2417-1_9(158-178)Online publication date: 4-Mar-2025
  • (2025)AutoCRAT: Automatic Cumulative Reconstruction of Alert TreesScience of Cyber Security10.1007/978-981-96-2417-1_15(273-294)Online publication date: 4-Mar-2025
  • (2025)An Architecture of Adaptive Cognitive Digital Twins for Resilient Healthcare Infrastructures and ServicesSecure and Resilient Digital Transformation of Healthcare10.1007/978-3-031-85558-0_1(3-22)Online publication date: 8-Mar-2025
  • Show More Cited By

Index Terms

  1. Characterizing the power of moving target defense via cyber epidemic dynamics

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    HotSoS '14: Proceedings of the 2014 Symposium and Bootcamp on the Science of Security
    April 2014
    184 pages
    ISBN:9781450329071
    DOI:10.1145/2600176
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    • No. Carolina State Univeresity: North Carolina State University

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 April 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. cyber epidemic dynamics
    2. cybersecurity dynamics
    3. epidemic threshold
    4. moving target defense
    5. security models

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    HotSoS '14
    Sponsor:
    • No. Carolina State Univeresity
    HotSoS '14: Symposium and Bootcamp on the Science of Security
    April 8 - 9, 2014
    North Carolina, Raleigh, USA

    Acceptance Rates

    HotSoS '14 Paper Acceptance Rate 12 of 21 submissions, 57%;
    Overall Acceptance Rate 34 of 60 submissions, 57%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Characterizing the Evolution of Psychological Factors Exploited by Malicious EmailsScience of Cyber Security10.1007/978-981-96-2417-1_9(158-178)Online publication date: 4-Mar-2025
    • (2025)AutoCRAT: Automatic Cumulative Reconstruction of Alert TreesScience of Cyber Security10.1007/978-981-96-2417-1_15(273-294)Online publication date: 4-Mar-2025
    • (2025)An Architecture of Adaptive Cognitive Digital Twins for Resilient Healthcare Infrastructures and ServicesSecure and Resilient Digital Transformation of Healthcare10.1007/978-3-031-85558-0_1(3-22)Online publication date: 8-Mar-2025
    • (2024)Implementation of a Lossless Moving Target Defense MechanismElectronics10.3390/electronics1305091813:5(918)Online publication date: 28-Feb-2024
    • (2024)Internet-Based Social Engineering Psychology, Attacks, and Defenses: A SurveyProceedings of the IEEE10.1109/JPROC.2024.3379855112:3(210-246)Online publication date: Mar-2024
    • (2024)Characterizing Privacy Risks in Healthcare IoT SystemsSecure and Resilient Digital Transformation of Healthcare10.1007/978-3-031-55829-0_4(51-68)Online publication date: 16-Mar-2024
    • (2023)Cyber Attacks Against Enterprise Networks: Characterization, Modeling and ForecastingScience of Cyber Security10.1007/978-3-031-45933-7_4(60-81)Online publication date: 21-Nov-2023
    • (2023)AICA Development ChallengesAutonomous Intelligent Cyber Defense Agent (AICA)10.1007/978-3-031-29269-9_18(367-394)Online publication date: 3-Jun-2023
    • (2022)Job Completion Time Under Migration-Based Dynamic Platform TechniqueIEEE Transactions on Services Computing10.1109/TSC.2020.298921515:3(1345-1357)Online publication date: 1-May-2022
    • (2022)Quantifying Cybersecurity Effectiveness of Dynamic Network DiversityIEEE Transactions on Dependable and Secure Computing10.1109/TDSC.2021.310751419:6(3804-3821)Online publication date: 1-Nov-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media