skip to main content
research-article

Wire mesh design

Published: 27 July 2014 Publication History

Abstract

We present a computational approach for designing wire meshes, i.e., freeform surfaces composed of woven wires arranged in a regular grid. To facilitate shape exploration, we map material properties of wire meshes to the geometric model of Chebyshev nets. This abstraction is exploited to build an efficient optimization scheme. While the theory of Chebyshev nets suggests a highly constrained design space, we show that allowing controlled deviations from the underlying surface provides a rich shape space for design exploration. Our algorithm balances globally coupled material constraints with aesthetic and geometric design objectives that can be specified by the user in an interactive design session. In addition to sculptural art, wire meshes represent an innovative medium for industrial applications including composite materials and architectural façades. We demonstrate the effectiveness of our approach using a variety of digital and physical prototypes with a level of shape complexity unobtainable using previous methods.

Supplementary Material

MP4 File (a66-sidebyside.mp4)

References

[1]
Adkins, J. E. 1956. Finite Plane Deformation of Thin Elastic Sheets Reinforced with Inextensible Cords. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 249, 961, 125--150.
[2]
Aono, M., Denti, P., Breen, D. E., and Wozny, M. J. 1996. Fitting a woven cloth model to a curved surface: dart insertion. IEEE Computer Graphics and Applications 16, 5, 60--70.
[3]
Aono, M., Breen, D. E., and Wozny, M. J. 2001. Modeling methods for the design of 3D broadcloth composite parts. Computer-Aided Design 33, 13, 989--1007.
[4]
Aono, M. 1994. Computer-Aided Geometric Design for Forming Woven Cloth Composites. PhD thesis, Rensselaer Polytechnic Institute.
[5]
Baillargeon, Y., and Vu-Khanh, T. 2001. Prediction of fiber orientation and microstructure of woven fabric composites after forming. Composite Structures 52, 3-4, 475--481.
[6]
Bakelman, I. Y. 1965. Chebyshev networks in manifolds of bounded curvature. Trudy Matematicheskogo Instituta im. VA Steklova 76, 124--129.
[7]
Bieberbach, L. 1926. über Tchebychefsche Netze auf Flächen negativer krümmung, sowie auf einigen weiteren flächenarten. Preuss. Akad. Wiss., Phys. Math. Kl 23, 294--321.
[8]
Bo, P., Pottmann, H., Kilian, M., Wang, W., and Wallner, J. 2011. Circular arc structures. ACM Trans. Graph. (SIGGRAPH '11) 30, 4, 101:1--101:11.
[9]
Bobenko, A. I., and Pinkall, U. 1996. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. Journal of Differential Geometry 43, 3, 527--611.
[10]
Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-up: Shaping discrete geometry with projections. Comp. Graph. Forum (SGP '12) 31, 5, 1657--1667.
[11]
Burago, Y. D., Ivanov, S. V., and Malev, S. G. 2007. Remarks on Chebyshev Coordinates. Journal of Mathematical Sciences 140, 4, 497--501.
[12]
Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1, 11:1--11:12.
[13]
de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. 2013. On the equilibrium of simplicial masonry structures. ACM Trans. Graph. (SIGGRAPH '13) 32, 4, 93:1--93:10.
[14]
Deng, B., Bouaziz, S., Deuss, M., Zhang, J., Schwartzburg, Y., and Pauly, M. 2013. Exploring local modifications for constrained meshes. Computer Graphics Forum (EUROGRAPHICS '13) 32, 2, 11--20.
[15]
Deng, B., Bouaziz, S., Deuss, M., Kaspar, A., Schwartzburg, Y., and Pauly, M. 2014. Interactive design exploration for constrained meshes. Computer-Aided Design. To appear.
[16]
Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM Trans. Graph. (SIGGRAPH '10) 29, 4, 45:1--45:10.
[17]
Ghys, É. 2011. Sur la coupe des vêtements: variation autour d'un thème de Tchebychev. L'Enseignement Mathématique Revue Internationale 2e Sèrie 57, 1--2, 165--208.
[18]
Hazzidakis, J. N. 1879. Über einige Eigenschaften der Flächen mit constantem Krümmungsmass. Journal für die reine und angewandte Mathematik 88, 68--73.
[19]
Hoffmann, T. 1999. Discrete Amsler surfaces and a discrete Painlevé III equation. Oxford Lecture Series in Mathematics and its Applications 16, 83--96.
[20]
Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. (SIGGRAPH '06) 25, 3, 681--689.
[21]
Liu, Y., Pan, H., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH '13) 32, 4, 92:1--92:10.
[22]
Möbius, J., and Kobbelt, L. 2012. Openflipper: An open source geometry processing and rendering framework. In Curves and Surfaces, J.-D. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche, M.-L. Mazure, and L. Schumaker, Eds., vol. 6920 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 488--500.
[23]
Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM Trans. Graph. (SIGGRAPH '13) 32, 4, 91:1--91:12.
[24]
Pinkall, U. 2008. Designing cylinders with constant negative curvature. In Discrete Differential Geometry. Springer, 57--66.
[25]
Pipkin, A. C. 1984. Equilibrium of Tchebychev nets. Archive for Rational Mechanics and Analysis 85, 1, 81--97.
[26]
Pipkin, A. C. 1986. Continuously distributed wrinkles in fabrics. Archive for Rational Mechanics and Analysis 95, 2, 93--115.
[27]
Poranne, R., Ovreiu, E., and Gotsman, C. 2013. Interactive planarization and optimization of 3D meshes. Computer Graphics Forum 32, 1, 152--163.
[28]
Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., and Wallner, J. 2008. Freeform surfaces from single curved panels. ACM Trans. Graph. (SIGGRAPH '08) 27, 3, 76:1--76:10.
[29]
Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas, L., and Wallner, J. 2010. Geodesic patterns. ACM Trans. Graph. (SIGGRAPH '10) 29, 4, 43:1--43:10.
[30]
Rivlin, R. S. 1958. The deformation of a membrane formed by inextensible cords. Archive for Rational Mechanics and Analysis 2, 1, 447--476.
[31]
Rivlin, R. S. 1964. Networks of inextensible cords. In Nonlinear Problems of Engineering. Academic Press Professional, Inc., New York, 51--64.
[32]
Rivlin, R. S. 1997. Plane Strain of a Net Formed by Inextensible Cords. In Collected Papers of R. S. Rivlin, G. I. Barenblatt and D. D. Joseph, Eds. Springer New York, 511--534.
[33]
Robertson, R. E., Hsiue, E. S., Sickafus, E. N., and Yeh, G. S. Y. 1981. Fiber rearrangements during the molding of continuous fiber composites. I. Flat cloth to a hemisphere. Polymer composites 2, 3, 126--131.
[34]
Robertson, R. E., Chu, T. J., Gerard, R. J., Kim, J. H., Park, M., Kim, H. G., and Peterson, R. C. 2000. Three-dimensional fiber reinforcement shapes obtainable from flat, bidirectional fabrics without wrinkling or cutting. Part 2: a single n-sided pyramid, cone, or round box. Composites Part A: Applied Science and Manufacturing 31, 11, 1149--1165.
[35]
Samelson, S. L., and Dayawansa, W. P. 1995. On the Existence of Global Tchebychev Nets. Transactions of the American Mathematical Society 347, 2, 651--660.
[36]
Samelson, S. L. 1991. Global Tchebychev Nets on Complete Two-Dimensional Riemannian Surfaces. Archive for Rational Mechanics and Analysis 114, 3, 237--254.
[37]
Sauer, R. 1970. Differenzengeometrie. Springer Verlag, Berlin.
[38]
Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum (EUROGRAPHICS '13) 32, 2, 317--326.
[39]
Tschebyscheff, P. L. 1878. Sur la coupe des vêtements, "On the cutting of garments". Association francaise pour l'avancement des sciences, 154--155.
[40]
van West, B. P., Pipes, R. B., and Keefe, M. 1990. A Simulation of the Draping of Bidirectional Fabrics over Arbitrary Surfaces. Journal of the Textile Institute 81, 4, 448--460.
[41]
Voss, A. 1882. Über ein neues Princip der Abbildung krummer Oberflächen. Mathematische Annalen 19, 1--26.
[42]
Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. (SIGGRAPH '12) 31, 4, 87:1--87:11.
[43]
Wang, W. B., and Pipkin, A. C. 1986. Inextensible networks with bending stiffness. Quarterly Journal of Mechanics & Applied Mathematics 39, 3, 343--359.
[44]
Wang, J., Paton, R., and Page, J. R. 1999. The draping of woven fabric preforms and prepregs for production of polymer composite components. Composites Part A: Applied Science and Manufacturing 30, 6, 757--765.
[45]
Wang, W., Liu, Y., Yan, D., Chan, B., Ling, R., and Sun, F. 2008. Hexagonal meshes with planar faces. HKU CS Tech Report TR-2008-13.
[46]
Wunderlich, W. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Springer Verlag.
[47]
Ye, L., and Daghyani, H. R. 1997. Characteristics of woven fibre fabric reinforced composites in forming process. Composites Part A: Applied Science and Manufacturing 28, 9, 869--874.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Chebyshev nets
  2. design
  3. discrete differential geometry
  4. global optimization
  5. interactive shape modeling
  6. wire mesh

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)58
  • Downloads (Last 6 weeks)11
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)TensCERs: Tension-Constrained Elastic RodsACM Transactions on Graphics10.1145/368796743:6(1-13)Online publication date: 19-Dec-2024
  • (2024)Chebyshev Parameterization for Woven Fabric ModelingACM Transactions on Graphics10.1145/368792843:6(1-15)Online publication date: 19-Dec-2024
  • (2024)Alignable Lamella GridshellsACM Transactions on Graphics10.1145/368789843:6(1-21)Online publication date: 19-Dec-2024
  • (2024)Optimal surface clothing with elastic netsJournal of the Mechanics and Physics of Solids10.1016/j.jmps.2024.105684188(105684)Online publication date: Jul-2024
  • (2024)3D compression-twist lattice metamaterials for surface reconfigurability of future architectureComposite Structures10.1016/j.compstruct.2024.118075337(118075)Online publication date: Jun-2024
  • (2024)Form-finding of elastic gridshell based on spatial elastica modelComposite Structures10.1016/j.compstruct.2023.117653327(117653)Online publication date: Jan-2024
  • (2023)Rectifying Strip PatternsACM Transactions on Graphics10.1145/361837842:6(1-18)Online publication date: 5-Dec-2023
  • (2023)C-Shells: Deployable Gridshells with Curved BeamsACM Transactions on Graphics10.1145/361836642:6(1-17)Online publication date: 5-Dec-2023
  • (2023)Inkjet 4D Print: Self-folding Tessellated Origami Objects by Inkjet UV PrintingACM Transactions on Graphics10.1145/359240942:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Deployable strip structuresACM Transactions on Graphics10.1145/359239342:4(1-16)Online publication date: 26-Jul-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media