skip to main content
research-article

Robust field-aligned global parametrization

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We present a robust method for computing locally bijective global parametrizations aligned with a given cross-field. The singularities of the parametrization in general agree with singularities of the field, except in a small number of cases when several additional cones need to be added in a controlled way. Parametric lines can be constrained to follow an arbitrary set of feature lines on the surface. Our method is based on constructing an initial quad patch partition using robust cross-field integral line tracing. This process is followed by an algorithm modifying the quad layout structure to ensure that consistent parametric lengths can be assigned to the edges. For most meshes, the layout modification algorithm does not add new singularities; a small number of singularities may be added to resolve an explicitly described set of layouts. We demonstrate that our algorithm succeeds on a test data set of over a hundred meshes.

Skip Supplemental Material Section

Supplemental Material

a135-sidebyside.mp4

mp4

13 MB

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. In ACM Transactions on Graphics (TOG), vol. 22, ACM, 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andronov, A. A., Leontovich, E., Gordon, I., and Maier, A. 1973. Qualitative theory of second-order dynamic systems. Israel Program for Scientific Translations Jerusalem.Google ScholarGoogle Scholar
  3. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449--458.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bommes, D., Lvy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2012. Quad Meshing. Eurographics Association, Cagliari, Sardinia, Italy, M.-P. Cani and F. Ganovelli, Eds., 159--182.Google ScholarGoogle Scholar
  6. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., Kobbelt, L., et al. 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eppstein, D., and Erickson, J. 1999. Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete and Computational Geometry 22, 4, 569--592.Google ScholarGoogle ScholarCross RefCross Ref
  9. Eppstein, D., Goodrich, M. T., Kim, E., and Tamstorf, R. 2008. Motorcycle graphs: canonical quad mesh partitioning. In Computer Graphics Forum, vol. 27, Wiley Online Library, 1477--1486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gunpinar, E., Moriguchi, M., Suzuki, H., and Ohtake, Y. 2014. Feature-aware partitions from the motorcycle graph. Computer-Aided Design 47, 85--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jadhav, S., Bhatia, H., Bremer, P.-T., Levine, J. A., Nonato, L. G., and Pascucci, V. 2012. Consistent approximation of local flow behavior for 2d vector fields using edge maps. In Topological Methods in Data Analysis and Visualization II. Springer, 141--159.Google ScholarGoogle Scholar
  12. Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25 (April), 412--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Transactions on Graphics (TOG) 32, 4, 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In SIGGRAPH 1998, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Li, W.-C., Vallet, B., Ray, N., and Lévy, B. 2006. Representing higher-order singularities in vector fields on piecewise linear surfaces. Visualization and Computer Graphics, IEEE Transactions on 12, 5, 1315--1322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Li, W., Ray, N., and Lévy, B. 2006. Automatic and interactive mesh to T-spline conversion. In Symposium on Geometry Processing, Eurographics Association, 200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Transactions on Graphics (TOG) 31, 4, 108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Transactions on Graphics (TOG) 31, 4, 109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Myles, A., and Zorin, D. 2013. Controlled-distortion constrained global parametrization. ACM Transactions on Graphics (TOG) 32, 4, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. ACM Trans. Graph. 29, 4, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ray, N., and Sokolov, D. 2013. Tracing cross-free polylines oriented by a n-symmetry direction field on triangulated surfaces. arXiv preprint arXiv:1306.0706.Google ScholarGoogle Scholar
  22. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sheffer, A., and de Sturler, E. 2001. Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening. Engineering with Computers 17, 3, 326--337.Google ScholarGoogle ScholarCross RefCross Ref
  25. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1--77:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Szymczak, A., and Zhang, E. 2012. Robust morse decompositions of piecewise constant vector fields. Visualization and Computer Graphics, IEEE Transactions on 18, 6, 938--951. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tricoche, X., Scheuermann, G., and Hagen, H. 2000. Higher order singularities in piecewise linear vector fields. In The Mathematics of Surfaces IX. Springer, 99--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tricoche, X. 2002. Vector and tensor field topology simplification, tracking, and visualization. In PhD. thesis, Universität Kaiserslautern, Citeseer.Google ScholarGoogle Scholar
  30. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Transactions on Graphics (TOG) 25, 4, 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust field-aligned global parametrization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 4
        July 2014
        1366 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2601097
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2014
        Published in tog Volume 33, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader