skip to main content
10.1145/2608628.2608637acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Sparse multivariate function recovery with a high error rate in the evaluations

Published:23 July 2014Publication History

ABSTRACT

In [Kaltofen and Yang, Proc. ISSAC 2013] we have generalized algebraic error-correcting decoding to multivariate sparse rational function interpolation from evaluations that can be numerically inaccurate and where several evaluations can have severe errors ("outliers"). Here we present a different algorithm that can interpolate a sparse multivariate rational function from evaluations where the error rate is 1/q for any q > 2, which our ISSAC 2013 algorithm could not handle. When implemented as a numerical algorithm we can, for instance, reconstruct a fraction of trinomials of degree 15 in 50 variables with non-outlier evaluations of relative noise as large as 10-7 and where as much as 1/4 of the 14717 evaluations are outliers with relative error as small as 0.01 (large outliers are easily located by our method).

For the algorithm with exact arithmetic and exact values at non-erroneous points, we provide a proof that for random evaluations one can avoid quadratic oversampling. Our argument already applies to our original 2007 sparse rational function interpolation algorithm [Kaltofen, Yang and Zhi, Proc. SNC 2007], where we have experimentally observed that for T unknown non-zero coefficients in a sparse candidate ansatz one only needs T +O(1) evaluations rather than the proven O(T2) (cf. Candès and Tao sparse sensing). Here we finally can give the probabilistic analysis for this fact.

References

  1. Arnold, A., Giesbrecht, M., and Roche, D. S. Faster sparse interpolation of straight-line programs. In CASC (2013), V. P. Gerdt, W. Koepf, E. W. Mayr, and E. V. Vorozhtsov, Eds., vol. 8136 of LNCS, Springer, pp. 61--74.Google ScholarGoogle Scholar
  2. Ben-Or, M., and Tiwari, P. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proc. Twentieth STOC (New York, N.Y., 1988), ACM Press, pp. 301--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blahut, R. E. A universal Reed-Solomon decoder. IBM J. Res. Develop. 18, 2 (Mar. 1984), 943--959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Candès, E. J., and Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52 (2004), 5406--5425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Comer, M. T., Kaltofen, E. L., and Pernet, C. Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values. In Proc. ISSAC 2012 (New York, N. Y., July 2012), J. van der Hoeven and M. van Hoeij, Eds., ACM, pp. 138--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cuyt, A., and Lee, W. Sparse interpolation of multivariate rational functions. TCS 412 (2011), 1445--1456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. de Kleine, J., Monagan, M., and Wittkopf, A. Algorithms for the non-monic case of the sparse modular GCD algorithm. In Proc. ISSAC 2005 (New York, N. Y., 2005), M. Kauers, Ed., ACM Press, pp. 124--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Garg, S., and Schost, Éric. Interpolation of polynomials given by straight-line programs. TCS 410, 27--29 (2009), 2659--2662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Giesbrecht, M., Labahn, G., and Lee, W. Symbolic-numeric sparse interpolation of multivariate polynomials. JSC 44 (2009), 943--959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kaltofen, E. Factorization of polynomials given by straight-line programs. In Randomness and Computation, S. Micali, Ed. JAI Press Inc., 1989, pp. 375--412.Google ScholarGoogle Scholar
  11. Kaltofen, E. Fifteen years after DSC and WLSS2 What parallel computations I do today {Invited lecture at PASCO 2010}. In Proc. PASCO 2010 (New York, N. Y., July 2010), M. Moreno Maza and J.-L. Roch, Eds., ACM, pp. 10--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kaltofen, E., Lakshman Y. N., and Wiley, J. M. Modular rational sparse multivariate polynomial interpolation. In Proc. 1990 Internat. Symp. Symbolic Algebraic Comput. (ISSAC'90) (1990), S. Watanabe and M. Nagata, Eds., ACM Press, pp. 135--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kaltofen, E., and Lee, W. Early termination in sparse interpolation algorithms. JSC 36, 3--4 (2003), 365--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kaltofen, E., and Nehring, M. Supersparse black box rational function interpolation. In Proc. 2011 Internat. Symp. Symbolic Algebraic Comput. ISSAC 2011 (New York., N. Y., June 2011), A. Leykin, Ed., ACM, pp. 177--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kaltofen, E., and Pernet, C. Cauchy interpolation with errors in the values. Submitted manuscript, 13 pages, Dec. 2013.Google ScholarGoogle Scholar
  16. Kaltofen, E., and Yang, Z. On exact and approximate interpolation of sparse rational functions. In Proc. ISSAC 2007 (New York, N. Y., 2007), C. W. Brown, Ed., ACM Press, pp. 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kaltofen, E., and Yang, Z. Sparse multivariate function recovery from values with noise and outlier errors. In Proc. ISSAC 2013 (New York, N. Y., 2013), M. Kauers, Ed., ACM, pp. 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kaltofen, E., Yang, Z., and Zhi, L. On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms. In Proc. SNC 2007 (New York, N. Y., 2007), J. Verschelde and S. M. Watt, Eds., ACM Press, pp. 11--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mahoney, M. W. Randomized algorithms for matrices and data. URL: http://arxiv.org/abs/1104.5557, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Olshevsky, V., and Shokrollahi, M. A. A displacement approach to decoding algebraic codes. In Algorithms for Structured Matrices: Theory and Applications. AMS, Providence, RI, 2003, pp. 265--292. Contemp. Math., vol. 323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Prony, R. Essai expérimental et analytique sur les lois de la Dilatabilité de fluides élastiques etc. J. de l'École Polytechnique 1 (Floréal et Prairial III (1795)), 24--76.Google ScholarGoogle Scholar
  22. Saraf, S., and Yekhanin, S. Noisy interpolation of sparse polynomials, and applications. In Proc. 26th Annual IEEE Conf. Comp. Complexity (2011), IEEE Comp. Soc., pp. 86--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Welch, L. R., and Berlekamp, E. R. Error correction of algebraic block codes. US Patent 4,633,470, 1986. Filed 1983.Google ScholarGoogle Scholar
  24. Zippel, R. Interpolating polynomials from their values. JSC 9, 3 (1990), 375--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Zippel, R. E. Probabilistic algorithms for sparse polynomials. PhD thesis, MIT, Cambridge, USA, Sept. 1979.Google ScholarGoogle Scholar

Index Terms

  1. Sparse multivariate function recovery with a high error rate in the evaluations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
        July 2014
        444 pages
        ISBN:9781450325011
        DOI:10.1145/2608628

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISSAC '14 Paper Acceptance Rate51of96submissions,53%Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader