skip to main content
10.1145/2608628.2608654acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Synthesis of optimal numerical algorithms using real quantifier elimination (case study: square root computation)

Published:23 July 2014Publication History

ABSTRACT

We report on on-going efforts to apply real quantifier elimination to the synthesis of optimal numerical algorithms. In particular, we describe a case study on the square root problem: given a real number x and an error bound ε, find a real interval such that it contains [EQUATION] and its width is less than or equal to ε.

A typical numerical algorithm starts with an initial interval and repeatedly updates it by applying a "refinement map" on it until it becomes narrow enough. Thus the synthesis amounts to finding a refinement map that ensures the correctness and optimality of the resulting algorithm.

This problem can be formulated as a real quantifier elimination. Hence, in principle, the synthesis can be carried out automatically. However, the computational requirement is huge, making the automatic synthesis practically impossible with the current general real quantifier elimination software.

We overcame the difficulty by (1) carefully reducing a complicated quantified formula into several simpler ones and (2) automatically eliminating the quantifiers from the resulting ones using the state of the art quantifier elimination software.

As the result, we were able to synthesize semi-automatically, under mild assumptions, a class of optimal maps, which are significantly better than the well known hand-crafted Secant-Newton map. Interestingly, the optimal synthesized maps are not contracting as one would naturally expect.

References

  1. B. Akbarpour and L. C. Paulson. MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. J. Autom. Reasoning, 44(3):175--205, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, Inc., New York, NY, 1983.Google ScholarGoogle Scholar
  3. H. Anai and V. Weispfenning. Set Computations Using Real Quantifier Elimination. In HSCC, pages 63--76, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. S. Arnon. A Cluster-based Cylindrical Algebraic Decomposition Algorithm. J. Symb. Comput., 5(1-2):189--212, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Basu, R. Pollack, and M.-F. Roy. On the Combinatorial and Algebraic Complexity of Quantifier Elimination. J. ACM, 43(6):1002--1045, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Beebe. Accurate Square Root Computation. Technical report, Center for Scientific Computing, Department of Mathematics, University of Utah, 1991.Google ScholarGoogle Scholar
  7. R. Bradford, J. H. Davenport, M. England, S. McCallum, and D. Wilson. Cylindrical Algebraic Decompositions for Boolean Combinations. In ISSAC, pages 125--132, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. W. Brown. Improved Projection for Cylindrical Algebraic Decomposition. J. Symb. Comput., 32(5):447--465, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. W. Brown. Simple CAD Construction and Its Applications. J. Symb. Comput., 31(5):521--547, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. W. Brown. QEPCAD-B: A Program for Computing with Semi-algebraic Sets using CADs. SIGSAM Bulletin, 37(4):97--108, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. W. Brown. Fast Simplifications for Tarski Formulas based on Monomial Inequalities. J. Symb. Comput., 47(7):859--882, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. W. Brown. Constructing a Single Open Cell in a Cylindrical Algebraic Decomposition. In ISSAC, pages 133--140, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Caviness and J. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and monographs in symbolic computation, Springer, 1998.Google ScholarGoogle Scholar
  14. W. Cody and W. Waite. Software Manual for the Elementary Functions. Prentice-Hall, Englewood Cliffs, NJ, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In Automata Theory and Formal Languages, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. E. Collins and H. Hong. Cylindrical Algebraic Decomposition for Quantifier Elimination. J. Symb. Comput., 12(3):299--328, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Dolzmann, A. Seidl, and T. Sturm. Efficient Projection Orders for CAD. In ISSAC, pages 111--118, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Dolzmann and T. Sturm. REDLOG: Computer Algebra Meets Computer Logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation), 31(2):2--9, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Erascu and H. Hong. The Secant-Newton Map is Optimal Among Contracting Quadratic Maps for Square Root Computation. Journal of Reliable Computing, 18:73--81, 2013.Google ScholarGoogle Scholar
  20. D. Fowler and E. Robson. Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context. Historia Mathematica, 25(4):366--378, 1998.Google ScholarGoogle Scholar
  21. D. Grigoriev. Complexity of Deciding Tarski Algebra. J. Symb. Comput., 5(1-2):65--108, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. C. Thacher Jr., and C. Witzgall. Computer Approximations. John Wiley, 1968. Reprinted, E. Krieger Publishing Company (1978). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Hong. An Improvement of the Projection Operator in Cylindrical Algebraic Decomposition. In ISSAC, pages 261--264, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Hong. Simple Solution Formula Construction in Cylindrical Algebraic Decomposition Based Quantifier Elimination. In ISSAC, pages 177--188, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Hong. Special Issue Editorial: Computational Quantifier Elimination. The Computer Journal, 1993.Google ScholarGoogle Scholar
  26. H. Hong and M. S. E. Din. Variant Quantifier Elimination. J. Symb. Comput., 47(7):883--901, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Liska and S. Steinberg. Applying Quantifier Elimination to Stability Analysis of Difference Schemes. Comput. J., 36(5):497--503, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  28. S. McCallum. An Improved Projection Operation for Cylindrical Algebraic Decomposition of Three-Dimensional Space. J. Symb. Comput., 5(1-2):141--161, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. McCallum. On Projection in CAD-based Quantifier Elimination with Equational Constraint. In ISSAC, pages 145--149, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. McCallum. On Propagation of Equational Constraints in CAD-based Quantifier Elimination. In ISSAC, pages 223--231, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. R. Meggitt. Pseudo Division and Pseudo Multiplication Processes. IBM Journal of Research and Development, 6(2):210--226, 1962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.Google ScholarGoogle Scholar
  33. R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Renegar. On the Computational Complexity and Geometry of the First-Order Theory of the Reals. J. Symb. Comput., 13(3):255--352, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. N. Revol. Interval Newton Iteration in Multiple Precision for the Univariate Case. Numerical Algorithms, 34(2-4):417--426, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Strzebonski. Cylindrical Algebraic Decomposition using Validated Numerics. J. Symb. Comput., 41(9):1021--1038, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  37. A. Strzeboski. Cylindrical Decomposition for Systems Transcendental in the First Variable. J. Symb. Comput., 46(11):1284--1290, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Tarski. A Decision Method for Elementary Algebra and Geometry. Bulletin of the American Mathematical Society, 1951.Google ScholarGoogle Scholar
  39. J. H. Wensley. A Class of Non-Analytical Iterative Processes. The Computer Journal, 1(4):163--167, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  40. I. Wolfram Research. Mathematica Edition: Version 8.0. Wolfram Research, Inc., 2010.Google ScholarGoogle Scholar

Index Terms

  1. Synthesis of optimal numerical algorithms using real quantifier elimination (case study: square root computation)

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Other conferences
              ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
              July 2014
              444 pages
              ISBN:9781450325011
              DOI:10.1145/2608628

              Copyright © 2014 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 23 July 2014

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              ISSAC '14 Paper Acceptance Rate51of96submissions,53%Overall Acceptance Rate395of838submissions,47%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader