skip to main content
10.1145/2618243.2618264acmotherconferencesArticle/Chapter ViewAbstractPublication PagesssdbmConference Proceedingsconference-collections
research-article

Managing evolving shapes in sensor networks

Published:30 June 2014Publication History

ABSTRACT

This work addresses the problem of efficient distributed detection and tracking of mobile and evolving/deformable spatial shapes in Wireless Sensor Networks (WSN). The shapes correspond to contiguous regions bounding the locations of sensors in which the readings of the sensors satisfy a particular threshold-based criterion related to the values of a physical phenomenon that they measure. We formalize the predicates representing the shapes in such settings and present detection algorithms. In addition, we provide a light-weight protocol and aggregation methods for energy-efficient distributed execution of those algorithms. Another contribution of this work is that we developed efficient techniques for detecting a co-occurrence of shapes within a given proximity from each other. Our experiments demonstrate that, when compared to the centralized techniques -- which is, predicates being detected in a dedicated sink -- as well as distributed periodic contours construction, our methodologies yield significant energy/communication savings.

References

  1. R. Adaikkalavan and S. Chakravarthy. Event specification and processing for advanced applications: Generalization and formalization. In Database and Expert Systems Applications, pages 369--379, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 2005.Google ScholarGoogle Scholar
  3. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: A survey. Comput. Netw., 38(4):393--422, Mar. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Celik, S. Shekhar, J. P. Rogers, and J. A. Shine. Mixed-drove spatiotemporal co-occurrence pattern mining. IEEE Trans. on Knowl. and Data Eng., 20(10):1322--1335, Oct. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I. Demirkol, C. Ersoy, and F. Alagoz. Mac protocols for wireless sensor networks: A survey. IEEE Communication Magazine, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Duckham, L. Kulik, M. Worboys, and A. Galton. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn., 41(10):3224--3236, Oct. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Duttagupta, K. Ramamritham, and P. Kulkarni. Tracking dynamic boundaries using sensor network. Parallel and Distributed Systems, IEEE Transactions on, 22(10):1766--1774, Oct 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane. Information Theory, IEEE Transactions on, 29(4):551--559, Jul 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Erwig and M. Schneider. Spatio-temporal predicates. IEEE Trans. on Knowl. and Data Eng., 14(4):881--901, July 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining in a data warehousing environment. In PROC. 24TH INT. CONF. VERY LARGE DATA BASES, VLDB, pages 323--333, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Ester, H. peter Kriegel, J. S, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. pages 226--231. AAAI Press, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Fayed and H. T. Mouftah. Localised alpha-shape computations for boundary recognition in sensor networks. Ad Hoc Netw., 7(6):1259--1269, Aug. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Gandhi, J. Hershberger, and S. Suri. Approximate isocontours and spatial summaries for sensor networks. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN '07, pages 400--409, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. O. C. Ghica, G. Trajcevski, P. Scheuermann, Z. Bischof, and N. Valtchanov. Sidnet-swans: A simulator and integrated development platform for sensor networks applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys '08, pages 385--386, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Hartung, R. Han, C. Seielstad, and S. Holbrook. Firewxnet: a multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In MobiSys, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Hinze and A. Voisard. A parametrized algebra for event notification services. In TIME, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. N. Hubbell and Q. Han. Dragon: Detection and tracking of dynamic amorphous events in wireless sensor networks. Parallel and Distributed Systems, IEEE Transactions on, 23(7):1193--1204, July 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Iwanicki and M. van Steen. A case for hierarchical routing in low-power wireless embedded networks. TOSN, 8(3):25, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Jeong, T. Hwang, T. He, and D. H.-C. Du. Mcta: Target tracking algorithm based on minimal contour in wireless sensor networks. In INFOCOM, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Jiang, M. Worboys, and S. Nittel. Qualitative change detection using sensor networks based on connectivity information. GeoInformatica, 15(2):305--328, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: An acquisitional query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122--173, Mar. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Megiddo, N. Megiddo, N. Megiddo, and N. Megiddo. Linear-time algorithms for linear programming in r3 and related problems. In Foundations of Computer Science, 1982. SFCS '08. 23rd Annual Symposium on, pages 329--338, Nov 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. M. A. Mohamed, A. A. Khokhar, and G. Trajcevski. Energy efficient in-network data indexing for mobile wireless sensor networks. In SSTD, pages 165--182, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. G. Pillai, R. A. Angryk, and B. Aydin. A filter-and-refine approach to mine spatiotemporal co-occurrences. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL'13, pages 104--113, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. Qian, Q. He, K. Chiew, and J. He. Spatial co-location pattern discovery without thresholds. Knowledge and Information Systems, 33(2):419--445, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Szewczyk, A. M. Mainwaring, J. Polastre, J. Anderson, and D. E. Culler. An analysis of a large scale habitat monitoring application. In SenSys, pages 214--226, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. G. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE MELECON âĂŹ83, pages 10--02, 1983.Google ScholarGoogle Scholar
  28. M. Umer, L. Kulik, and E. Tanin. Spatial interpolation in wireless sensor networks: localized algorithms for variogram modeling and kriging. GeoInformatica, 14(1):101--134, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Wang, J. Gao, and J. S. B. Mitchell. Boundary recognition in sensor networks by topological methods. In MOBICOM, pages 122--133, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Woo, S. Madden, and R. Govindan. Networking support for query processing in sensor networks. Communications of the ACM, 47:2004, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Zhou, G. Trajcevski, O. Ghica, R. Tamassia, A. Khokhar, and P. Scheuermann. Deflection aware tracking principal selection in active wireless sensor networks. IEEE Trans. on Vehicular Technology, 61(7), 2012.Google ScholarGoogle ScholarCross RefCross Ref
  33. X. Zhu, R. Sarkar, J. Gao, and J. Mitchell. Light-weight contour tracking in wireless sensor networks. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pages --, April 2008.Google ScholarGoogle Scholar

Index Terms

  1. Managing evolving shapes in sensor networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      SSDBM '14: Proceedings of the 26th International Conference on Scientific and Statistical Database Management
      June 2014
      417 pages
      ISBN:9781450327220
      DOI:10.1145/2618243

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 June 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SSDBM '14 Paper Acceptance Rate26of71submissions,37%Overall Acceptance Rate56of146submissions,38%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader