skip to main content
10.1145/2623330.2623644acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

FEMA: flexible evolutionary multi-faceted analysis for dynamic behavioral pattern discovery

Published:24 August 2014Publication History

ABSTRACT

Behavioral pattern discovery is increasingly being studied to understand human behavior and the discovered patterns can be used in many real world applications such as web search, recommender system and advertisement targeting. Traditional methods usually consider the behaviors as simple user and item connections, or represent them with a static model. In real world, however, human behaviors are actually complex and dynamic: they include correlations between user and multiple types of objects and also continuously evolve along time. These characteristics cause severe data sparsity and computational complexity problem, which pose great challenge to human behavioral analysis and prediction. In this paper, we propose a Flexible Evolutionary Multi-faceted Analysis (FEMA) framework for both behavior prediction and pattern mining. FEMA utilizes a flexible and dynamic factorization scheme for analyzing human behavioral data sequences, which can incorporate various knowledge embedded in different object domains to alleviate the sparsity problem. We give approximation algorithms for efficiency, where the bound of approximation loss is theoretically proved. We extensively evaluate the proposed method in two real datasets. For the prediction of human behaviors, the proposed FEMA significantly outperforms other state-of-the-art baseline methods by 17.4%. Moreover, FEMA is able to discover quite a number of interesting multi-faceted temporal patterns on human behaviors with good interpretability. More importantly, it can reduce the run time from hours to minutes, which is significant for industry to serve real-time applications.

Skip Supplemental Material Section

Supplemental Material

p1186-sidebyside.mp4

mp4

269.4 MB

References

  1. E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup. Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41--56, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  2. W. Chen, W. Hsu, and M. L. Lee. Making recommendations from multiple domains. In KDD'13, pages 892--900. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. W. Chen, W. Hsu, and M. L. Lee. Modeling user's receptiveness over time for recommendation. In SIGIR'13, pages 373--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Cichocki and R. Zdunek. Regularized alternating least squares algorithms for non-negative matrix/tensor factorization. In Advances in Neural Networks--ISNN 2007, pages 793--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Cui, S. Jin, L. Yu, F. Wang, W. Zhu, and S. Yang. Cascading outbreak prediction in networks: a data-driven approach. In KDD'13, pages 901--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Cui, F. Wang, S. Liu, M. Ou, S. Yang, and L. Sun. Who should share what? item-level social influence prediction for users and posts ranking. In SIGIR'11, pages 185--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Davis and M. Goadrich. The relationship between precision-recall and roc curves. In ICML'06, pages 233--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253--1278, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link prediction using matrix and tensor factorizations. TKDD, 5(2):10, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommendation via cross-domain triadic factorization. In WWW'13, pages 595--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Jiang, P. Cui, R. Liu, Q. Yang, F. Wang, W. Zhu, and S. Yang. Social contextual recommendation. In CIKM'12, pages 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Jiang, P. Cui, F. Wang, Q. Yang, W. Zhu, and S. Yang. Social recommendation across multiple relational domains. In CIKM'12, pages 1422--1431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries. In KDD'12, pages 316--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. Karypis. Evaluation of item-based top-n recommendation algorithms. In CIKM'01, pages 247--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. G. Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Applications, 23(1):243--255, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455--500, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In ICDM'08, pages 363--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in heterogeneous networks. In CIKM'10, pages 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Narang, S. Nagar, S. Mehta, L. Subramaniam, and K. Dey. Discovery and analysis of evolving topical social discussions on unstructured microblogs. In Advances in Information Retrieval, pages 545--556. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Rachlin. The value of temporal patterns in behavior. Current Directions in Psychological Science, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  22. K. Radinsky, K. M. Svore, S. T. Dumais, M. Shokouhi, J. Teevan, A. Bocharov, and E. Horvitz. Behavioral dynamics on the web: Learning, modeling, and prediction. TOIS, 31(3):16, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM'10, pages 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. B. Roy, M. De Cock, V. Mandava, S. Savanna, B. Dalessandro, C. Perlich, W. Cukierski, and B. Hamner. The microsoft academic search dataset and kdd cup 2013. In Proceedings of the KDD Cup 2013 Workshop. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. W. Stewart and J.-g. Sun. Matrix perturbation theory.Google ScholarGoogle Scholar
  26. J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Incremental tensor analysis: Theory and applications. TKDD, 2(3):11, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a novel approach to personalized web search. In WWW'05, pages 382--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Sun, J. Tang, J. Han, C. Chen, and M. Gupta. Co-evolution of multi-typed objects in dynamic star networks. TKDE, 2013.Google ScholarGoogle Scholar
  29. P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Tag recommendations based on tensor dimensionality reduction. In RecSys'08, pages 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Wang, J. Sun, J. Hu, and S. Ebadollahi. imet: interactive metric learning in healthcare applications. In SDM'11, pages 944--955.Google ScholarGoogle Scholar
  31. F. Wang, H. Tong, and C.-Y. Lin. Towards evolutionary nonnegative matrix factorization. In AAAI'11, pages 501--506.Google ScholarGoogle Scholar
  32. X. Wang, C. Zhai, and D. Roth. Understanding evolution of research themes: a probabilistic generative model for citations. In KDD'13, pages 1115--1123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal recommendation on graphs via long-and short-term preference fusion. In KDD'10, pages 723--732. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Who, where, when and what: Discover spatio-temporal topics for twitter users. In KDD'13, pages 605--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Zheng, H. Ding, H. Mamitsuka, and S. Zhu. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In KDD'13, pages 1025--1033. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. FEMA: flexible evolutionary multi-faceted analysis for dynamic behavioral pattern discovery

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
        August 2014
        2028 pages
        ISBN:9781450329569
        DOI:10.1145/2623330

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 August 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        KDD '14 Paper Acceptance Rate151of1,036submissions,15%Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader