skip to main content
research-article

CAMA: Efficient Modeling of the Capture Effect for Low-Power Wireless Networks

Authors Info & Claims
Published:26 August 2014Publication History
Skip Abstract Section

Abstract

Network simulation is an essential tool for the design and evaluation of wireless network protocols, and realistic channel modeling is essential for meaningful analysis. Recently, several network protocols have demonstrated substantial network performance improvements by exploiting the capture effect, but existing models of the capture effect are still not adequate for protocol simulation and analysis. Physical-level models that calculate the signal-to-interference-plus-noise ratio (SINR) for every incoming bit are too slow to be used for large-scale or long-term networking experiments, and link-level models such as those currently used by the NS2 simulator do not accurately predict protocol performance. In this article, we propose a new technique called the capture modeling algorithm (CAMA) that provides the simulation fidelity of physical-level models while achieving the simulation time of link-level models. We confirm the validity of CAMA through comparison with the empirical traces of the experiments conducted by various numbers of CC1000 and CC2420-based nodes in different scenarios. Our results indicate that CAMA can accurately predict the packet reception, corruption, and collision detection rates of real radios, while existing models currently used by the NS2 simulator produce substantial prediction error.

References

  1. S. Abukharis, R. MacKenzie, and T. O’Farrell. 2011. Throughput and delay analysis for a differentiated p-persistent CSMA protocol with the capture effect. In Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC Spring). IEEE, 1--5.Google ScholarGoogle Scholar
  2. M. Al-Bado, C. Sengul, and R. Merz. 2012. What details are needed for wireless simulations? A study of a site-specific indoor wireless model. In Proceedings of the 31st Annual IEEE International Conference on Computer Communications (INFOCOM’12). IEEE, 289--297.Google ScholarGoogle Scholar
  3. J. C. Arnbak and W. Van Blitterswijk. 1987. Capacity of slotted ALOHA in rayleigh-fading channels. IEEE Journal on Selected Areas in Communications 5, 2 (Feb.), 261--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Cardieri. 2010. Modeling interference in wireless ad hoc networks. IEEE Communications Surveys & Tutorials 12, 4, 551--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. CC1120 2014. High Performance RF Transceiver for Narrowband Systems. Retrieved from www.ti.com/product/cc1120.Google ScholarGoogle Scholar
  6. Q. Chen, D. Jiang, V. Taliwal, and L. Delgrossi. 2006. IEEE 802.11 based vehicular communication simulation design for NS-2. In Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks (VANET’06). ACM, 50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and H. Hartenstein. 2007. Overhaul of IEEE 802.11 modeling and simulation in ns-2. In Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM’07). ACM, 159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Cheun and S. Kim. 1998. Joint delay-power capture in spread-spectrum packet radio networks. IEEE Transactions on Communications 46, 4 (April), 450--453.Google ScholarGoogle Scholar
  9. Chipcon CC1000. 2014. Single Chip Very Low Power RF Transceiver. Retreived from www.ti.com/lit/ds/symlink/cc1000.pdf.Google ScholarGoogle Scholar
  10. Chipcon CC2420. 2014. 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. Retrieved from http://www.ti.com/lit/gpn/cc2420.Google ScholarGoogle Scholar
  11. F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, and M. Zanolo. 2008. Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission channel and capture effects. IEEE Transactions on Communications 56, 7 (July), 1178--1188.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. H. Davis and S. A. Gronemeyer. 1980. Performance of slotted ALOHA random access with delay capture and randomized time of arrival. IEEE Transactions on Communications 28, 5 (May), 703--710.Google ScholarGoogle ScholarCross RefCross Ref
  13. B. Dezfouli, M. Radi, S. A. Razak, T. Hwee-Pink, and K. A. Bakar. 2014a. Modeling low-power wireless communications. Journal of Network and Computer Applications. DOI: http://dx.doi.org/10.1016/j.jnca. 2014.02.009.Google ScholarGoogle Scholar
  14. B. Dezfouli, M. Radi, S. A. Razak, K. Whitehouse, K. A. Bakar, and T. Hwee-Pink. 2014b. Improving broadcast reliability for neighbor discovery, link estimation and collection tree construction in wireless sensor networks. Computer Networks 62, 101--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis. 2010. Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys’10). ACM, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Firner, C. Xu, R. Howard, and Y. Zhang. 2010. Multiple receiver strategies for minimizing packet loss in dense sensor networks. In Proceedings of the 11th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’10). ACM, 211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng. 2006. Methods for restoring MAC layer fairness in IEEE 802.11 networks with physical layer capture. In Proceedings of the 2nd International Workshop on Multi-Hop Ad Hoc Networks: From Theory to Reality (REALMAN’06). ACM, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Gezer, C. Buratti, and R. Verdone. 2010. Capture effect in IEEE 802.15.4 networks: Modelling and experimentation. In Proceedings of the IEEE 5th International Symposium on Wireless Pervasive Computing (ISWPC’10). IEEE, 204--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Gupta and P. R. Kumar. 2000. The capacity of wireless networks. IEEE Transactions on Information Theory 46, 2 (March), 388--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Z. Hadzi-Velkov and B. Spasenovski. 2002. On the capacity of IEEE 802.11 DCF with capture in multipath-faded channels. International Journal of Wireless Information Networks 9, 3, 191--199.Google ScholarGoogle ScholarCross RefCross Ref
  21. E. B. Hamida, G. Chelius, J. M. Gorce, and E. Ben Hamida. 2009. Impact of the physical layer modeling on the accuracy and scalability of wireless network simulation. Simulation 85, 9 (June), 574--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Hu and J. C. Hou. 2005. A reactive channel model for expediting wireless network simulation. SIGMETRICS Performance Evaluation Review 33, 1. 410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. IEEE 802.15.4#8482;-2011. Wireless personal area networks (PANs). Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). DOI: http://standards.ieee.org/about/get/802/802.15.htmlGoogle ScholarGoogle Scholar
  24. A. Iyer, C. Rosenberg, and A. Karnik. 2009. What is the right model for wireless channel interference? IEEE Transactions on Wireless Communications 8, 5 (May), 2662--2671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. H. Kim and J. K. Lee. 1999. Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology 48, 4 (July), 1277--1286.Google ScholarGoogle Scholar
  26. A. Kochut, A. Vasan, A. Shankar, and A. Agrawala. 2004. Sniffing out the correct physical layer capture model in 802.11b. In Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP’04). IEEE, 252--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. 2007. An experimental study on the capture effect in 802.11a networks. In Proceedings of the the 2nd ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WinTECH’07). ACM, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Lee, J. Ryu, S.-J. Lee, and T. T. Kwon. 2010. Improved modeling of IEEE 802.11a PHY through fine-grained measurements. Computer Networks 54, 4 (March), 641--657. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Levis, N. Lee, M. Welsh, and D. Culler. 2003. TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys’03). ACM, 126--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He. 2006. ATPC: Adaptive transmission power control for wireless sensor networks. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys’06). ACM, 223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Lin, G. Zhou, Y. Wu, K. Whitehouse, J. A. Stankovic, and T. He. 2008. Achieving stable network performance for wireless sensornetworks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys’08). ACM, 453. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Lu and K. Whitehouse. 2009. Flash flooding: Exploiting the capture effect for rapid flooding in wireless sensor networks. In Proceedings of the 28th Conference on Computer Communications (INFOCOM’09). IEEE, 2491--2499.Google ScholarGoogle Scholar
  33. R. Maheshwari, S. Jain, and S. R. Das. 2008. On estimating joint interference for concurrent packet transmissions in low power wireless networks. In Proceedings of the 3rd ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WiNTECH’08). ACM, 89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. 2004. The flooding time synchronization protocol. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys’04). ACM, 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. H. Nikookar and H. Hashemi. 1993. Statistical modeling of signal amplitude fading of indoor radio propagation channels. In Proceedings of 2nd IEEE International Conference on Universal Personal Communications, Volume 1. IEEE, 84--88.Google ScholarGoogle Scholar
  36. NS-2. 2014. Network simulator. http://www.isi.edu/nsnam/ns/.Google ScholarGoogle Scholar
  37. OMNeT++. 2014. The OMNeT++ Network Simulation Framework. Retrieved from http://www.omnetpp.org.Google ScholarGoogle Scholar
  38. J. Polastre, J. Hill, and D. Culler. 2004. Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys’04). ACM, 95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Radi, B. Dezfouli, K. Abu Bakar, and S. Abd Razak. 2014. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks. Scientific World Journal 2014, 1--23.Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, and M. Lee. 2013. Network initialization in low-power wireless networks: A comprehensive study. Computer Journal. DOI: http://dx.doi.org/10.1093/comjnl/bxt074Google ScholarGoogle Scholar
  41. M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, and M. A. Nematbakhsh. 2011. Interference-aware multipath routing protocol for QoS improvement in event-driven wireless sensor networks. Tsinghua Science & Technology 16, 5 (Oct.), 475--490.Google ScholarGoogle ScholarCross RefCross Ref
  42. T. S. Rappaport. 2002. Wireless Communications: Principles and Practice (2nd ed.). Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. 2006. Measurement-based models of delivery and interference in static wireless networks. ACM SIGCOMM Computer Communication Review 36, 4 (Aug.), 51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. D. Son, B. Krishnamachari, and J. Heidemann. 2006. Experimental study of concurrent transmission in wireless sensor networks. In Proceedings of the 4th international conference on embedded networked sensor systems - SenSys’06, Boulder, Colorado, USA, pp. 237. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. TOSSIM. 2014. TinyOS Simulator. Retrieved from http://docs.tinyos.net/tinywiki/index.php/TOSSIM.Google ScholarGoogle Scholar
  46. C. Ware, J. Chicharo, and T. Wysocki. 2001. Simulation of capture behaviour in IEEE 802.11 radio modems. In Proceedings of the IEEE 54th Vehicular Technology Conference (VTC Fall’01), Vol. 3. IEEE, 1393--1397.Google ScholarGoogle Scholar
  47. K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. 2005. Exploiting the capture effect for collision detection and recovery. In Proceedings of the 2nd IEEE Workshop on Embedded Networked Sensors (EmNetS-II). IEEE, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. H. Xu, J. J. Garcia-Luna-Aceves, and R. S. Hamid. 2010. Exploiting the capture effect opportunistically in MANETs. In Proceedings of the Military Communication Conference (MILCOM’10). IEEE, 1490--1495.Google ScholarGoogle Scholar
  49. J.-H. Yun and S.-W. Seo. 2007. Novel collision detection scheme and its applications for IEEE 802.11 wireless LANs. Computer Communications 30, 6 (March), 1350--1366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Z. Zamalloa and B. Krishnamachari. 2007. An analysis of unreliability and asymmetry in low-power wireless links. ACM Transactions on Sensor Networks 3, 2 (June), 63--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. L. Q. Zhang, F. Wang, M. K. Han, and R. Mahajan. 2007. A general model of wireless interference. In Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking (MobiCom’07). ACM, 171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. 2006. Models and solutions for radio irregularity in wireless sensor networks. ACM Transactions on Sensor Networks 2, 2 (May), 221--262. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CAMA: Efficient Modeling of the Capture Effect for Low-Power Wireless Networks

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Sensor Networks
                ACM Transactions on Sensor Networks  Volume 11, Issue 1
                November 2014
                631 pages
                ISSN:1550-4859
                EISSN:1550-4867
                DOI:10.1145/2648771
                • Editor:
                • Chenyang Lu
                Issue’s Table of Contents

                Copyright © 2014 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 26 August 2014
                • Accepted: 1 May 2014
                • Revised: 1 January 2014
                • Received: 1 April 2013
                Published in tosn Volume 11, Issue 1

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader