skip to main content
10.1145/2630099.2630100acmconferencesArticle/Chapter ViewAbstractPublication PagesnparConference Proceedingsconference-collections
research-article

Collaborative filtering of color aesthetics

Published:08 August 2014Publication History

ABSTRACT

This paper investigates individual variation in aesthetic preferences, and learns models for predicting the preferences of individual users. Preferences for color aesthetics are learned using a collaborative filtering approach on a large dataset of rated color themes/palettes. To make predictions, matrix factorization is used to estimate latent vectors for users and color themes. We also propose two extensions to the probabilistic matrix factorization framework. We first describe a feature-based model using learned transformations from feature vectors to a latent space, then extend this model to non-linear transformations using a neural network. These extensions allow our model to predict preferences for color themes not present in the training set. We find that our approach for modelling user preferences outperforms an average aesthetic model which ignores personal variation. We also use the model for measuring theme similarity and visualizing the space of color themes.

References

  1. Adams, R. P., Dahl, G. E., and Murray, I. 2010. Incorporating Side Information Into Probabilistic Matrix Factorization Using Gaussian Processes. In Proc. UAI.Google ScholarGoogle Scholar
  2. Basu, C., Hirsh, H., and Cohen, W. 1998. Recommendation as Classification. In Proc. AAAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bychkovsky, V., Paris, S., Chan, E., and Durand, F. 2011. Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, T., Zheng, Z., Lu, Q., Z. W., and Yu, Y. 2011. Feature-based Matrix Factorization. Tech. rep., Apex Data and Knowledge Management Lab, Shanghai.Google ScholarGoogle Scholar
  5. Datta, R., Joshi, D., Li, J., and Wang, J. Z. 2006. Studying Aaesthetics in Photographic Images Using a Computational Approach. In Proc. ECCV, 7--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Granger, G. W. 1952. Objectivity of Color Preferences. Nature 170, 4332.Google ScholarGoogle ScholarCross RefCross Ref
  7. Kapoor, A., Caicedo, J., Lischinski, D., and Kang, S. 2013. Collaborative Personalization of Image Enhancement. IJCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Koren, Y., Bell, R., and Volinsky, C. 2009. Matrix Factorization Techniques for Recommender Systems. IEEE Computer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Landauer, T. K., and Dumais, S. T. 1997. A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological Review.Google ScholarGoogle Scholar
  10. Li, C., and Chen, T. 2009. Aesthetic Visual Quality Assessment of Paintings. Sel. Topics in Signal Processing 3, 2.Google ScholarGoogle Scholar
  11. Lin, S., and Hanrahan, P. 2013. Modeling How People Extract Color Themes from Images. In Proc. CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lin, S., Ritchie, D., Fisher, M., and Hanrahan, P. 2013. Probabilistic Color-by-Numbers: Suggesting Pattern Colorizations Using Factor Graphs.Google ScholarGoogle Scholar
  13. Marchesotti, L., Perronnin, F., Larlus, D., and Csurka, G. 2011. Assessing the Aesthetic Quality of Photographs Using Generic Image Descriptors. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Martindale, C., Moore, K., and Borkum, J. 1990. Aesthetic Preference. The American Journal of Psychology.Google ScholarGoogle Scholar
  15. Moorthy, A. K., Obrador, P., and Oliver, N. 2010. Towards Computational Models of Visual Aesthetic Appeal of Consumer Videos. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O'Donovan, P., Agarwala, A., and Hertzmann, A. 2011. Color Compatibility from Large Datasets. ACM Trans. Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ou, L.-C., and Luo, M. R. 2006. A Color Harmony Model for Two-Color Combinations. Col. Res. Appl 31, 5, 191--204.Google ScholarGoogle ScholarCross RefCross Ref
  18. Palmer, S., and Griscom, W. 2013. Accounting for Taste: Individual Differences in Preference for Harmony. Psychon Bull Rev.Google ScholarGoogle Scholar
  19. Prem Melville, R. M., and Nagarajan, R. 2001. Content-boosted Collaborative Filtering. In Proc. SIGIR Workshop on Recommender Systems.Google ScholarGoogle Scholar
  20. Reinecke, K., and Gajos, K. Z. 2014. Quantifying Visual Preferences Around the World. In Proc. CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Salakhutdinov, R., and Mnih, A. 2008. Bayesian Probabilistic Matrix Factorization Using Markov Chain Monte Carlo. In Proc. ICML. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Salakhutdinov, R., and Mnih, A. 2008. Probabilistic Matrix Factorization. In Proc. NIPS.Google ScholarGoogle Scholar
  23. Schloss, K. B., and Palmer, S. E. 2010. Aesthetics of Color Combinations. In Human Vision and Elec. Imaging, 752719.Google ScholarGoogle Scholar
  24. Su, X., and Khoshgoftaar, T. M. 2009. A Survey of Collaborative Filtering Techniques. Adv. in Artif. Intell. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Szabó, F., Bodrogi, P., and Schanda, J. 2010. Experimental Modeling of Colour Harmony. Col. Res. Appl 35, 1, 34--39.Google ScholarGoogle ScholarCross RefCross Ref
  26. Tibshirani, R. 1996. Regression Shrinkage and Selection Via the Lasso. Royal. Statist. Soc B 58, 1, 267--288.Google ScholarGoogle ScholarCross RefCross Ref
  27. van der Maaten, L., and Hinton, G. 2008. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9, 2579--2605.Google ScholarGoogle Scholar
  28. Wang, B., Yu, Y., Wong, T.-T., Chen, C., and Xu, Y.-Q. 2010. Data-Driven Image Color Theme Enhancement. ACM Trans. Graphics (Proc. SIGGRAPH Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wu, O., Hu, W., and Gao, J. 2011. Learning to Predict the Perceived Visual Quality of Photos. In Proc. ICCV, 225--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yu, L.-F., Yeung, S. K., Terzopoulos, D., and Chan, T. F. 2012. DressUp!: Outfit Synthesis Through Automatic Optimization.Google ScholarGoogle Scholar

Index Terms

  1. Collaborative filtering of color aesthetics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CAe '14: Proceedings of the Workshop on Computational Aesthetics
      August 2014
      100 pages
      ISBN:9781450330190
      DOI:10.1145/2630099

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 August 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate11of25submissions,44%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader