skip to main content
research-article

Graphical Modeling Tools for Systems Biology

Authors Info & Claims
Published:31 July 2014Publication History
Skip Abstract Section

Abstract

Modeling biological systems to understand their mechanistic behavior is an important activity in molecular systems biology. Mathematical modeling typically requires deep mathematical or computing knowledge, and this limits the spread of modeling tools among biologists. Graphical modeling languages have been introduced to minimize this limit. Here, we survey the main graphical formalisms (supported by software tools) available to model biological systems with a primary focus on their usability, within the framework of modeling reaction pathways with two-dimensional (2D) (possibly nested) compartments. Considering the main characteristics of the surveyed formalisms, we synthesise a new proposal (Style) and report the results of an online survey conducted among biologists to assess usability of available graphical formalisms. We consider this proposal a guideline developed from what we learned in the survey, which can inform development of graphical formalisms to model reaction pathways in 2D space.

References

  1. Ozgur E, Akman, David A. Rand, Paul E. Brown, and Andrew J. Millar. 2010. Robustness from flexibility in the fungal circadian clock. BMC Systems Biology 4, 1 (2010), 88.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Alberts. 2008. Molecular Biology of the Cell: Reference Edition. Number v. 1 in Molecular Biology of the Cell: Reference Edition. Taylor & Francis.Google ScholarGoogle Scholar
  3. Boanerges Aleman-Meza, Yihai Yu, Heinz-Bernd Schüttler, Jonathan Arnold, and Thiab R. Taha. 2009. KINSOLVER: A simulator for computing large ensembles of biochemical and gene regulatory networks. Computers & Mathematics with Applications 57, 3 (2009), 420--435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Steven S. Andrews, Nathan J. Addy, Roger Brent, and Adam P. Arkin. 2010. Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology 6, 3 (2010), e1000705.Google ScholarGoogle ScholarCross RefCross Ref
  5. John A. Bachman and Peter Sorger. 2011. New approaches to modeling complex biochemistry. Nature Methods 8, 2 (2011), 130.Google ScholarGoogle ScholarCross RefCross Ref
  6. Frank T. Bergmann and Herbert M. Sauro. 2006. SBW-a modular framework for systems biology. In Proceedings of the 38th Conference on Winter Simulation. Winter Simulation Conference, 1637--1645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. William J. Bosl. 2007. Systems biology by the rules: Hybrid intelligent systems for pathway modeling and discovery. BMC Systems Biology 1, 1 (2007), 13.Google ScholarGoogle ScholarCross RefCross Ref
  8. Dennis Bray, Robert B. Bourret, and Melvin I. Simon. 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Molecular Biology of the Cell 4, 5 (1993), 469.Google ScholarGoogle ScholarCross RefCross Ref
  9. Henri Casanova, Thomas M. Bartol, Joel Stiles, and Francine Berman. 2001. Distributing MCell simulations on the Grid. International Journal of High Performance Computing Applications 15, 3 (2001), 243--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Deepak Chandran, Frank T. Bergmann, Herbert M. Sauro, and others. 2009. TinkerCell: Modular CAD tool for synthetic biology. Journal of Biological Engineering 3, 1 (2009), 19.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. Cheong, A. Hoffmann, and A. Levchenko. 2008. Understanding NF-κ B signaling via mathematical modeling. Molecular Systems Biology 4, 192 (2008).Google ScholarGoogle Scholar
  12. Federica Ciocchetta, Adam Duguid, Stephen Gilmore, Maria Luisa Guerriero, and Jane Hillston. 2009. The Bio-PEPA tool suite. In Proceedings of the 6th International Conference on the Quantitative Evaluation of Systems (QEST ’09). IEEE, 309--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Robert Clewley. 2012. Hybrid models and biological model reduction with PyDSTool. PLoS Computational Biology 8, 8 (2012), e1002628.Google ScholarGoogle ScholarCross RefCross Ref
  14. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. 2008. A review of overview + detail, zooming, and focus + context interfaces. ACM Computing Surveys (CSUR) 41, 1 (2008), 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Colvin, M. I. Monine, J. R. Faeder, W. S. Hlavacek, D. D. Von Hoff, and R. G. Posner. 2009. Simulation of large-scale rule-based models. Bioinformatics 25, 7 (Apr 2009), 910--917. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. Dematté, C. Priami, and A. Romanel. 2008. The Beta Workbench: A computational tool to study the dynamics of biological systems. Briefings in Bioinformatics 9, 5 (2008), 437--449.Google ScholarGoogle ScholarCross RefCross Ref
  17. Pawan Dhar, Tan Chee Meng, Sandeep Somani, Li Ye, Anand Sairam, Mandar Chitre, Zhu Hao, and Kishore Sakharkar. 2004. Cellware: A multi-algorithmic software for computational systems biology. Bioinformatics 20, 8 (2004), 1319--1321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Niraj Dudani, Subhasis Ray, Siji George, and Upinder S. Bhalla. 2009. Multiscale modeling and interoperability in MOOSE. Neuroscience 10, Suppl 1 (2009), 54.Google ScholarGoogle Scholar
  19. Peter Eades, Wei Lai, Kazuo Misue, and Kozo Sugiyama. 1991. Preserving the Mental Map of a Diagram. International Institute for Advanced Study of Social Information Science, Fujitsu Limited.Google ScholarGoogle Scholar
  20. Florian Erhard, Caroline C. Friedel, and Ralf Zimmer. 2008. FERN--A Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinformatics 9, 1 (2008), 356.Google ScholarGoogle ScholarCross RefCross Ref
  21. Rudolf Fleischer and Colin Hirsch. 2001. Graph drawing and its applications. In Drawing Graphs. M. Kaufmann and D. Wagner, Eds., Springer, 1--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Yaniv Frishman and Ayellet Tal. 2004. Dynamic drawing of clustered graphs. In Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on. IEEE, 191--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Akira Funahashi, Yukiko Matsuoka, Akiya Jouraku, Mineo Morohashi, Norihiro Kikuchi, and Hiroaki Kitano. 2008. CellDesigner 3.5: A versatile modeling tool for biochemical networks. Proceedings of the IEEE 96, 8 (2008), 1254--1265.Google ScholarGoogle ScholarCross RefCross Ref
  24. T. D. Garvey, P. Lincoln, C. J. Pedersen, D. Martin, and M. Johnson. 2003. BioSPICE: Access to the most current computational tools for biologists. OMICS 7, 4 (2003), 411--420.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nail M. Gizzatkulov, Igor I. Goryanin, Eugeny A. Metelkin, Ekaterina A. Mogilevskaya, Kirill V. Peskov, and Oleg V. Demin. 2010. DBSolve Optimum: A software package for kinetic modeling which allows dynamic visualization of simulation results. BMC Systems Biology 4, 1 (2010), 109.Google ScholarGoogle ScholarCross RefCross Ref
  26. Gerd Grünert and Peter Dittrich. 2011. Using the SRSim software for spatial and rule-based modeling of combinatorially complex biochemical reaction systems. In Membrane Computing. M. Gheorghe, T. Hinze, G. Paun, G. Rozenberg, and A. Salomaa, Eds., Springer, 240--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Anthony D. Hill, Jonathan R. Tomshine, Emma M. B. Weeding, Vassilios Sotiropoulos, and Yiannis N. Kaznessis. 2008. SynBioSS: The synthetic biology modeling suite. Bioinformatics 24, 21 (2008), 2551--2553. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kummer. 2006. COPASI--A COmplex PAthway SImulator. Bioinformatics 22, 24 (Dec 2006), 3067--3074. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Xiaodi Huang, Wei Lai, A. S. M. Sajeev, and Junbin Gao. 2007. A new algorithm for removing node overlapping in graph visualization. Information Sciences 177, 14 (2007), 2821--2844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Michael Hucka, Andrew Finney, Herbert M. Sauro, Hamid Bolouri, John C. Doyle, Hiroaki Kitano, Adam P. Arkin, Benjamin J. Bornstein, Dennis Bray, Athel Cornish-Bowden, and others. 2003. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 4 (2003), 524--531.Google ScholarGoogle ScholarCross RefCross Ref
  31. Jonathan R. Karr, Jayodita C. Sanghvi, Derek N. Macklin, Miriam V. Gutschow, Jared M. Jacobs, Benjamin Bolival Jr., Nacyra Assad-Garcia, John I. Glass, and Markus W. Covert. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150, 2 (2012), 389--401.Google ScholarGoogle ScholarCross RefCross Ref
  32. Boris N. Kholodenko. 2006. Cell-signalling dynamics in time and space. Nature Reviews Molecular Cell Biology 7 (2006), 165--176.Google ScholarGoogle ScholarCross RefCross Ref
  33. Andrzej M. Kierzek. 2002. STOCKS: STOChastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18, 3 (2002), 470--481.Google ScholarGoogle ScholarCross RefCross Ref
  34. Hiroaki Kitano. 2002. Systems biology: A brief overview. Science 295, 5560 (2002), 1662--1664.Google ScholarGoogle Scholar
  35. F. Kolpakov, M. Puzanov, and A. Koshukov. 2006. BioUML: Visual modeling, automated code generation and simulation of biological systems. In Proceedings of the 5th International Conference on Bioinformatics of Genome Regulation and Structure. 281--285.Google ScholarGoogle Scholar
  36. Markus Koschorreck and Ernst D. Gilles. 2008. ALC: Automated reduction of rule-based models. BMC Systems Biology 2, 1 (2008), 91.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Krumsiek, S. Polsterl, D. M. Wittmann, and F. J. Theis. 2010. Odefy--from discrete to continuous models. BMC Bioinformatics 11 (2010), 233.Google ScholarGoogle ScholarCross RefCross Ref
  38. Hiroyuki Kurata, Kentaro Inoue, Kazuhiro Maeda, Koichi Masaki, Yuki Shimokawa, and Quanyu Zhao. 2007. Extended CADLIVE: A novel graphical notation for design of biochemical network maps and computational pathway analysis. Nucleic Acids Research 35, 20 (2007), e134--e134.Google ScholarGoogle ScholarCross RefCross Ref
  39. N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, R. Gauges, P. Ghazal, H. Kawaji, L. Li, Y. Matsuoka, A. Villéger, S. E. Boyd, L. Calzone, M. Courtot, U. Dogrusoz, T. C. Freeman, A. Funahashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle, E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D. B. Kell, C. Sander, H. Sauro, J. L. Snoep, K. Kohn, and H. Kitano. 2009. The systems biology graphical notation. Nature Biotechnology 27 (2009), 735--741.Google ScholarGoogle ScholarCross RefCross Ref
  40. Nicolas Le Novere and Thomas Simon Shimizu. 2001. STOCHSIM: Modelling of stochastic biomolecular processes. Bioinformatics 17, 6 (2001), 575--576.Google ScholarGoogle ScholarCross RefCross Ref
  41. Dong-Yup Lee, Choamun Yun, Ayoun Cho, Bo Kyeng Hou, Sunwon Park, and Sang Yup Lee. 2006. WebCell: A web-based environment for kinetic modeling and dynamic simulation of cellular networks. Bioinformatics 22, 9 (2006), 1150--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. W. J. Longabaugh. 2012. BioTapestry: A tool to visualize the dynamic properties of gene regulatory networks. Methods in Molecular Biology (Clifton, NJ) 786 (2012), 359.Google ScholarGoogle Scholar
  43. Carlos F. Lopez, Jeremy L. Muhlich, John A. Bachman, and Peter K. Sorger. 2013. Programming biological models in Python using PySB. Molecular Systems Biology 9, 1 (2013).Google ScholarGoogle Scholar
  44. Aneil Mallavarapu, Matthew Thomson, Benjamin Ullian, and Jeremy Gunawardena. 2007. Modular model building. arXiv preprint arXiv:0710.3421 (2007).Google ScholarGoogle Scholar
  45. Anthea Maton, David Lahart, Jean Hopkins, Maryanna Quon Warner, Susan Johnson, and Jill D. Wright. 1997. Cells: Building Blocks of Life. Pearson Prentice Hall.Google ScholarGoogle Scholar
  46. Martin Meier-Schellersheim, Xuehua Xu, Bastian Angermann, Eric J. Kunkel, Tian Jin, and Ronald N. Germain. 2006. Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Computational Biology 2, 7 (2006), e82.Google ScholarGoogle ScholarCross RefCross Ref
  47. Pedro Mendes. 1993. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Computer Applications in the Biosciences: CABIOS 9, 5 (1993), 563--571.Google ScholarGoogle Scholar
  48. John A. Miller, Andrew F. Seila, and Xuewei Xiang. 2000. The JSIM web-based simulation environment. Future Generation Computer Systems 17, 2 (2000), 119--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Bud Mishra, Marco Antoniotti, Salvatore Paxia, and Nadia Ugel. 2005. Simpathica: A computational systems biology tool within the valis bioinformatics environment. Computational Systems Biology (2005).Google ScholarGoogle Scholar
  50. I. I. Moraru, J. C. Schaff, B. M. Slepchenko, M. L. Blinov, F. Morgan, A. Lakshminarayana, F. Gao, Y. Li, and L. M. Loew. 2008. Virtual cell modelling and simulation software environment. IET Systems Biology 2, 5 (2008), 352--362.Google ScholarGoogle ScholarCross RefCross Ref
  51. M. J. Morine, A. C. Tierney, B. van Ommen, H. Daniel, S. Toomey, I. M. F. Gjelstad, I. C. Gormley, P. Prez-Martinez, C. A. Drevon, J. L-pez-Miranda, and H. M. Roche. 2011. Transcriptomic coordination in the human metabolic network reveals links between n-3 fat intake, adipose tissue gene expression and metabolic health. PLoS Computational Biology 7, 11 (2011).Google ScholarGoogle Scholar
  52. Christoph Müssel, Martin Hopfensitz, and Hans A. Kestler. 2010. BoolNet: An R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26, 10 (2010), 1378--1380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N. P. Nguyen. 2009. iBioSim: A tool for the analysis and design of genetic circuits. Bioinformatics 25, 21 (Nov 2009), 2848--2849. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Christopher R. Myers, Ryan N. Gutenkunst, and James P. Sethna. 2007. Python unleashed on systems biology. Computing in Science & Engineering 9, 3 (2007), 34--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Gabriele Neyer. 2001. Map labeling with application to graph drawing. In Drawing Graphs. M. Kaufmann and D. Wagner, Eds., Springer, 247--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Brett G. Olivier and Jacky L. Snoep. 2004. Web-based kinetic modelling using JWS Online. Bioinformatics 20, 13 (2004), 2143--2144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Julien F. Ollivier, Vahid Shahrezaei, and Peter S. Swain. 2010. Scalable rule-based modelling of allosteric proteins and biochemical networks. PLoS Computational Biology 6, 11 (2010), e1000975.Google ScholarGoogle ScholarCross RefCross Ref
  58. Andrew Phillips. 2009. A visual process calculus for biology. Symbolic Systems Biology: Theory and Methods. Jones and Bartlett.Google ScholarGoogle Scholar
  59. Corrado Priami. 2009. Algorithmic systems biology. CACM 52, 5 (2009), 80--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. C. Priami, A. Regev, E. Shapiro, and W. Silverman. 2001. Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letter 80 (2001), 25--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Helen C. Purchase, Jo-Anne Allder, and David Carrington. 2001. User preference of graph layout aesthetics: A UML study. In Graph Drawing. M. Kaufmann and D. Wagner, Eds., Springer, 5--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. S. Ramsey, D. Orrell, and H. Bolouri. 2005. Dizzy: Stochastic simulation of large-scale genetic regulatory networks. Journal of Bioinformatics Computing Biology 3, 2 (Apr 2005), 415--436.Google ScholarGoogle Scholar
  63. P. Rangamani, A. Lipshtat, E. U. Azeloglu, R. C. Calizo, M. Hu, S. Ghassemi, J. Hone, S. Scarlata, S. R. Neves, and R. Iyengar. 2013. Decoding information in cell shape. Cell 154, 6 (2013), 1356--69.Google ScholarGoogle ScholarCross RefCross Ref
  64. Andre S. Ribeiro, Daniel A. Charlebois, and Jason Lloyd-Price. 2007. CellLine, a stochastic cell lineage simulator. Bioinformatics 23, 24 (2007), 3409--3411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Andre S. Ribeiro and Jason Lloyd-Price. 2007. SGN Sim, a stochastic genetic networks simulator. Bioinformatics 23, 6 (2007), 777--779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. S. K. Sadiq, R. Guixa-Gonzalez, E. Dainese, M. Pastor, G. De Fabritiis, and J. Selent. 2013. Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs. Current Medicinal Chemistry 20, 1 (2013), 22--38.Google ScholarGoogle ScholarCross RefCross Ref
  67. Purvi Saraiya, Chris North, and Karen Duca. 2005. Visualizing biological pathways: Requirements analysis, systems evaluation and research agenda. Information Visualization 4, 3 (June 2005), 191--205. DOI: http://dx.doi.org/10.1057/palgrave.ivs.9500102 Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. A. M. Smith, W. Xu, Y. Sun, J. R. Faeder, and G. E. Marai. 2012. RuleBender: Integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinformatics 13 Suppl 8 (2012), S3.Google ScholarGoogle Scholar
  69. Marc T. Vass, Clifford A. Shaffer, Naren Ramakrishnan, Layne T. Watson, and John J. Tyson. 2006. The JigCell model builder: A spreadsheet interface for creating biochemical reaction network models. IEEE/ACM Transactions on Computational Biology and Bioinformatics on 3, 2 (2006), 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Michael Weber and Ekkart Kindler. 2003. The petri net kernel. Petri Net Technology for Communication-Based Systems (2003), 109--123.Google ScholarGoogle Scholar
  71. Katja Wegner, Johannes Knabe, Mark Robinson, Attila Egri-Nagy, Maria Schilstra, and Chrystopher Nehaniv. 2007. The NetBuilder’project: Development of a tool for constructing, simulating, evolving, and analysing complex regulatory networks. BMC Systems Biology 1, Suppl 1 (2007), P72.Google ScholarGoogle ScholarCross RefCross Ref
  72. Hans V. Westerhoff and Bernhard O. Palsson. 2004. The evolution of molecular biology into systems biology. Nature Biotechnology 22, 10 (2004), 1249--1252.Google ScholarGoogle ScholarCross RefCross Ref
  73. J. Zheng, D. Zhang, P. F. Przytycki, R. Zielinski, J. Capala, and T. M. Przytycka. 2010. SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics 26, 1 (2010), 141--142. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Graphical Modeling Tools for Systems Biology
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 47, Issue 2
          January 2015
          827 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/2658850
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 July 2014
          • Accepted: 1 June 2014
          • Revised: 1 March 2014
          • Received: 1 July 2013
          Published in csur Volume 47, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader