skip to main content
10.1145/2636240.2636841acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

A Space-Filling Multidimensional Visualization (SFMDVis for Exploratory Data Analysis

Authors Info & Claims
Published:05 August 2014Publication History

ABSTRACT

We introduce a new Space-Filling Multidimensional Data Visualization (SFMDVis) that can be used to facilitate the viewing, interaction and analysis of the multidimensional data with a fully utilized display space. The existing multidimensional visualizations typically create visual clutter and over-plotting that make it difficult for interaction with data items directly. Our new space filling technique uses horizontal lines to represent multidimensional data items. Each line is logically divided into segments based on color mapping in order to denote the data item with its value. The proposed visualization is space efficient and also avoids the visual clutter and over-plotting problems as we have often observed in other visualizations. In addition, we allow user to interact directly with data on the display which is more intuitive and efficient than other means.

References

  1. Alfred Inselberg. The plane with parallel coordinates. The Visual Computer, 1(2):69--91, 1985.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Friendly and D. Denis. The early origins and development of the scatterplot. Journal of the History of the Behavioral Sciences, 41(2):103--130, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. B. Shneiderman. Tree visualization with treemaps: A 2-d space-filling approach. ACM Transaction on Graphics, 11(1):92--99, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Guo, H. Xiao, Z. Wang, and X. Yuan. Interactive local clustering operations for high dimensional data in parallel coordinates. In IEEE Pacific Visualization Symposium, pages 97--104, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. O. Artero, M.C.F De Oliveira, and H. Levkowits. Uncovering clusters in crowded parallel coordinates visualizations. In IEEE Pacific Visualization Symposium, pages 81--88, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Zhou, H. Qu X. Yuan, W. Cui, and B. Cheng. Visual clustering in parallel coordinates. Computer Graphics Forum, 27(3):1047--1054, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Yang, M. O. Ward, E. A. Rundersteiner, and S. Huang. Visual hierarchical dimension reduction for exploration of high dimensional datasets. In Joint Eurographics/IEEE TCVG Symposium on Visualization, pages 19--28, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W. Peng, M.O. Ward, and E.A. Rundersteiner. Clutter reduction in multi-dimensional data visualization using dimension reordering. In IEEE Symposium on Information Visualization, pages 89--96, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Ankerst, S. Berchtold, and D. A. Keimr. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In IEEE Symposium on Information Visualization, pages 52--60, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. H. Fua, M. O. Ward, and E. A. Rundersteiner. Hierarchical parallel coordinates for exploration of large datasets. In Proc. of the conference on Visualization, pages 43--50, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Ward. Xmdvtool: integrating multiple methods for visualizing multivariate data. In Proc. of the conference on Visualization, pages 326--333, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Novotny and H. Hauser. Outlier-preserving focus+context visualization in parallel coordinates. IEEE Tran. on Visualization and Computer Graphics, 12(5):893--900, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. O. Artero, M. C. F. De Oliveira, and H. Levkowitz. Uncovering clusters in crowded parallel coordinates visualizations. In IEEE Symposium on Information Visualization, pages 81--88, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Friendly. Corrgrams: exploratory displays for correlation matrices. The American Statistician, 56(4):316--324, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. H. Huang, M. L. Huang, and K. Zhang. An interactive scatter plot metrics visualization for decision trend analysis. In International Conference on Machine Learning and Applications, pages 258--264, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Daniel A. Keim, Ming C. Hao, Umesh Dayal, and Meichun Hsu. Pixel bar charts: a visualization technique for very large multi-attribute data sets. Information Visualization, 1(1):20--34, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. G. Healey. Choosing effective colours for data visualization. In IEEE Conference on Visualization (VIS96), pages 263--271, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Bourke. Colour spaces. http://paulbourke.net/texture_colour/colourspace/, 1996.Google ScholarGoogle Scholar
  19. M. Harrower and C. A. Brewe. Colorbrewer.org - an online tool for selecting colour schemes for maps. The Cartographic Journal, 40(1):27--37, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Rao and S. Card. The table lens: Merging graphical and symbolic representation in an interactive focus+context visualization for tabular informations. In SIGGHI Conference on Human Factors in Computing Systems, pages 318--322, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. Shneiderman. The eyes have it: a task by data type taxonomy for information visualizations. In IEEE Symposium on Visual Languages, pages 336--343, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Hauser, F. Ledermann, and H. Doleisch. Angular brushing of extended parallel coordinates. In IEEE Symposium on Information Visualization, pages 127--130, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. A. Hartigan and M. A. Wong. Algorithm as 136: a k-means clustering algorithm. Journal of Royal Statistical Society, 28(1):100--108, 1979.Google ScholarGoogle Scholar
  25. R. E. Bellman. Dynamic programming. Princeton University Press, 1957.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is 'nearest neighbor' meaningful? In International Conference on Database Theory, pages 217--235, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Space-Filling Multidimensional Visualization (SFMDVis for Exploratory Data Analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        VINCI '14: Proceedings of the 7th International Symposium on Visual Information Communication and Interaction
        August 2014
        262 pages
        ISBN:9781450327657
        DOI:10.1145/2636240

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 August 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        VINCI '14 Paper Acceptance Rate21of62submissions,34%Overall Acceptance Rate71of193submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader