skip to main content
research-article

EEMC: Enabling Energy-Efficient Mobile Crowdsensing with Anonymous Participants

Authors Info & Claims
Published:30 April 2015Publication History
Skip Abstract Section

Abstract

Mobile Crowdsensing (MCS) requires users to be motivated to participate. However, concerns regarding energy consumption and privacy—among other things—may compromise their willingness to join such a crowd. Our preliminary observations and analysis of common MCS applications have shown that the data transfer in MCS applications may incur significant energy consumption due to the 3G connection setup. However, if data are transferred in parallel with a traditional phone call, then such transfer can be done almost “for free”: with only an insignificant additional amount of energy required to piggy-back the data—usually incoming task assignments and outgoing sensor results—on top of the call. Here, we present an <i>Energy-Efficient Mobile Crowdsensing</i> (EEMC) framework where task assignments and sensing results are transferred in parallel with phone calls. The main objective, and the principal contribution of this article, is an MCS task assignment scheme that guarantees that a minimum number of anonymous participants return sensor results within a specified time frame, while also minimizing the waste of energy due to redundant task assignments and considering privacy concerns of participants. Evaluations with a large-scale real-world phone call dataset show that our proposed <i>EEMC</i> framework outperforms the baseline approaches, and it can reduce overall energy consumption in data transfer by 54--66% when compared to the 3G-based solution.

References

  1. A. Ahmed, K. Yasumoto, Y. Yamauchi, and M. Ito. 2011. Distance and time based node selection for probabilistic coverage in people-centric sensing. In Proceedings of the 2011 IEEE Conference on Sensing, Communication and Networking. IEEE, 134--142.Google ScholarGoogle Scholar
  2. D. Akimura, Y. Kawahara, and T. Asami. 2012. Compressed sensing method for human activity sensing using mobile phone accelerometers. In Proceedings of the 2012 Networked Sensing Systems Conference. IEEE, 1--4.Google ScholarGoogle Scholar
  3. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. 2009. Energy consumption in mobile phones: A measurement study and implications for network applications. In Proceedings of the 2009 ACM SIGCOMM Conference on Internet Measurement Conference. ACM, 280--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. V. D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, and C. Ziemlicki. 2012. Data for development: The D4D challenge on mobile phone data. CoRR abs/1210.0137 (2012).Google ScholarGoogle Scholar
  5. J. Brown, J. Finney, C. Efstratiou, B. Green, N. Davies, M. Lowton, and G. Kortuem. 2007. Network interrupts: Supporting delay sensitive applications in low power wireless control networks. In Proceedings of the 2007 ACM Workshop on Challenged Networks. ACM, 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao. 2012. Automatically characterizing places with opportunistic crowdsensing using smartphones. In Proceedings of the 2012 International Conference on Ubiquitous Computing, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Chu, N. D. Lane, T. T. Lai, C. Pang, X. Meng, Q. Guo, F. Li, and F. Zhao. 2011. Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings of the 2011 ACM International Conference on Embedded Networked Sensor Systems. ACM, 54--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Cohn, S. Gupta, T.-J. Lee, D. Morris, J. R. Smith, M. S. Reynolds, D. S. Tan, and S. N. Patel. 2012. An ultra-low-power human body motion sensor using static electric field sensing. In Proceedings of the 2012 ACM International Conference on Ubiquitous Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and A. Woodruff. 2009. Common sense: Participatory urban sensing using a network of handheld air quality monitors. In Proceedings of the 2009 ACM Conference on Embedded Networked Sensor Systems. ACM, 349--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. 2012. Low-power wireless bus. In Proceedings of the 2012 ACM Conference on Embedded Networked Sensor Systems. ACM, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Ficek, N. Clark, and L. Kencl. 2012. Can crowdsensing beat dynamic cell-ID&quest; In Proceedings of the 2012 International Workshop on Sensing Applications on Mobile Phones. ACM, 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Frank. 2011. Adaptive and Tractable Bayesian Context Inference for Resource Constrained Devices. Ph.D. Dissertation. Waterford Institute of Technology.Google ScholarGoogle Scholar
  13. R. K. Ganti, F. Ye, and H. Lei. 2011. Mobile crowdsensing: Current state and future challenges. IEEE Communications Magazine 49 (2011), 32--39.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. W. Gardiner et&nbsp;al. 1985. Handbook of Stochastic Methods. Vol. 3. Springer, Berlin.Google ScholarGoogle Scholar
  15. D. Gordon, J. Czerny, T. Miyaki, and M. Beigl. 2012. Energy-efficient activity recognition using prediction. In Proceedings of the 2012 International Symposium on Wearable Computers. IEEE, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Gourieroux, A. Monfort, and A. Trognon. 1984. Pseudo maximum likelihood methods: Applications to Poisson models. Econometrica: Journal of the Econometric Society (1984), 701--720.Google ScholarGoogle Scholar
  17. Bin Guo, Zhiwen Yu, Daqing Zhang, and Xingshe Zhou. 2014. From participatory sensing to mobile crowd sensing. In Proceedings of the 2014 IEEE Pervasive Computing and Communication Workshops. IEEE, 593--598.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. Hachem, A. Pathak, and V. Issarny. 2013. Probabilistic registration for large-scale mobile participatory sensing. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications, Vol. 18. 22.Google ScholarGoogle Scholar
  19. S. Isaacman, R. Becker, R. Cáceres, S. Kobourov, M. Martonosi, J. Rowland, and A. Varshavsky. 2011. Identifying important places in people&quest;s lives from cellular network data. In Proceedings of the 2011 International Conference on Pervasive Computing. Springer, 133--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. P. Jayaraman, A. Sinha, W. Sherchan, S. Krishnaswamy, A. Zaslavsky, P. D. Haghighi, S. Loke, and M. T. Do. 2012. Here-n-Now: A framework for context-aware mobile crowdsensing (Demo). In Proceedings of the 2012 International Conference on Pervasive Computing. Springer, 1--4.Google ScholarGoogle Scholar
  21. Y. Jiang, D. Li, G. Yang, Q. Lv, and Z. Liu. 2011. Deliberation for intuition: A framework for energy-efficient trip detection on cellular phones. In Proceedings of the 2011 ACM International Conference on Ubiquitous Computing. ACM, 315--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. B. Kjærgaard, S. Bhattacharya, H. Blunck, and P. Nurmi. 2011. Energy-efficient trajectory tracking for mobile devices. In Proceedings of the 2011 ACM International Conference on Mobile Systems, Applications, and Services. ACM, 307--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell, and F. Zhao. 2011. Enabling large-scale human activity inference on smartphones using community similarity networks (csn). In Proceedings of the 2011 ACM International Conference on Ubiquitous Computing. ACM, 355--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. C. Larson, T. J. Lee, S. Liu, M. Rosenfeld, and S. N. Patel. 2011. Accurate and privacy preserving cough sensing using a low-cost microphone. In Proceedings of the 2011 ACM International Conference on Ubiquitous Computing. ACM, 375--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y.-B. Lin. 1997. Reducing location update cost in a PCS network. IEEE/ACM Transactions on Networking (TON) 5, 1 (1997), 25--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and W. Trappe. 2010. Parknet: Drive-by sensing of road-side parking statistics. In Proceedings of the 2010 International Conference on Mobile Systems, Applications, and Services. ACM, 123--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and A. T. Campbell. 2010. Supporting energy-efficient uploading strategies for continuous sensing applications on mobile phones. Pervasive Computing (2010), 355--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. K. Nurminen. 2010. Parallel connections and their effect on the battery consumption of a mobile phone. In Proceedings of the 2010 IEEE Consumer Communications and Networking Conference. IEEE, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Pásztor, M. Musolesi, and C. Mascolo. 2007. Opportunistic mobile sensor data collection with scar. In Proceedings of the 2007 IEEE Conference on Mobile Ad-hoc and Sensor Systems. IEEE, 1--12.Google ScholarGoogle Scholar
  30. D. Philipp, J. Stachowiak, P. Alt, F. Dürr, and K. Rothermel. 2013. DrOPS: Model-driven optimization for public sensing systems. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications. IEEE, 185--192.Google ScholarGoogle Scholar
  31. S. Phithakkitnukoon and R. Dantu. 2011. Towards ubiquitous computing with call prediction. ACM SIGMOBILE Mobile Computing and Communications Review 15, 1 (2011), 52--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Phithakkitnukoon, R. Dantu, R. Claxton, and N. Eagle. 2011. Behavior-based adaptive call predictor. ACM Transactions on Autonomous and Adaptive Systems 6, 3 (2011), 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Puccinelli and S. Giordano. 2013. Connectivity and energy usage in low-power wireless: An experimental study. In Proceedings of PerCom Workshops. IEEE, 590--595.Google ScholarGoogle Scholar
  34. D. Puccinelli, S. Giordano, M. Zuniga, and P. J. Marrón. 2012. Broadcast-free collection protocol. In Proceedings of the 2011 ACM International Conference on Embedded Networked Sensor Systems. ACM, 29--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Pease. 2013. What is killing smartphones&quest; BBC - Future - Technology. (2013). http://www.bbc.com/future/story/20130227-what-is-killing-smartphones.Google ScholarGoogle Scholar
  36. M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan. 2012a. Medusa: A programming framework for crowd-sensing applications. In Proceedings of the 2012 International Conference on Mobile Systems, Applications, and Services. ACM, 337--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu. 2012b. Improving energy efficiency of personal sensing applications with heterogeneous multi-processors. In Proceedings of the 2012 ACM International Conference on Ubiquitous Computing. ACM, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. K. Rachuri, C. Efstratiou, I. Leontiadis, C. Mascolo, and P. J. Rentfrow. 2013. METIS: Exploring mobile phone sensing offloading for efficiently supporting social sensing applications. In Proceedings of the 2013 IEEE Conference on Pervasive Computing and Communications. IEEE, 85--93.Google ScholarGoogle Scholar
  39. K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow. 2011. Sociablesense: Exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In Proceedings of the 2011 Annual International Conference on Mobile Computing and Networking. ACM, 73--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. S. Ramos, T. Zhang, J. Liu, N. B. Priyantha, and A. Kansal. 2011. Leap: A low energy assisted GPS for trajectory-based services. Proceedings of the 2011 ACM International Conference on Ubiquitous Computing (2011), 335--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. 2010. Ear-phone: An end-to-end participatory urban noise mapping system. In Proceedings of the 2010 ACM/IEEE International Conference on Information Processing in Sensor Networks. ACM, 105--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Reddy, D. Estrin, and M. Srivastava. 2010. Recruitment framework for participatory sensing data collections. In Proceedings of Pervasive. 138--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. X. Sheng, J. Tang, and W. Zhang. 2012. Energy-efficient collaborative sensing with mobile phones. In Proceedings of the 2012 IEEE Conference on Computer Communications. IEEE, 1916--1924.Google ScholarGoogle Scholar
  44. W. Sherchan, P. P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and A. Sinha. 2012. Using on-the-move mining for mobile crowdsensing. In Proceedings of the 2012 IEEE Conference on Mobile Data Management. IEEE, 115--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. Smith, A. Sample, P. Powledge, S. Roy, and A. Mamishev. 2006. A wirelessly-powered platform for sensing and computation. Proceedings of the 2006 International Conference on Ubiquitous Computing (2006), 495--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. E. Soroush, K. Wu, and J. Pei. 2008. Fast and quality-guaranteed data streaming in resource-constrained sensor networks. In Proceedings of the 2008 ACM International Symposium on Mobile Ad-hoc Networking and Computing. ACM, 391--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, and J. Eriksson. 2009. VTrack: Accurate, energy-aware road traffic delay estimation using mobile phones. In Proceedings of the 2009 ACM Conference on Embedded Networked Sensor Systems. ACM, 85--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. 2012. Who killed my battery&quest;: Analyzing mobile browser energy consumption. In Proceedings of the 2012 International Conference on World Wide Web. ACM, 41--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. L. Wang, D. Zhang, and H. Xiong. 2013. effSense: Energy-efficient and cost-effective data uploading in mobile crowdsensing. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. ACM, 1075--1086. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari, and N. Sadeh. 2009. A framework of energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 2009 International Conference on Mobile Systems, Applications, and Services. ACM, 179--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. J. Weinberg, L. D. Brown, and J. R. Stroud. 2007. Bayesian forecasting of an inhomogeneous Poisson process with applications to call center data. Journal of the American Statististical Association 102, 480 (2007), 1185--1198.Google ScholarGoogle ScholarCross RefCross Ref
  52. H. Weinschrott, F. Durr, and K. Rothermel. 2010. Streamshaper: Coordination algorithms for participatory mobile urban sensing. In Proceedings of the 2010 IEEE Conference on Mobile Ad-hoc and Sensor Systems. IEEE, 195--204.Google ScholarGoogle Scholar
  53. H. Weinschrott, J. Weisser, F. Durr, and K. Rothermel. 2011. Participatory sensing algorithms for mobile object discovery in urban areas. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications. IEEE, 128--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan. 2013. Lowering the barriers to large-scale mobile crowdsensing. In Proceedings of the 2013 International Workshops on Mobile Computing Systems and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. H. Xiong, L. Wang, and D. Zhang. 2013a. EEMC: An energy-efficient mobile crowdsensing mechanism by reusing call/SMS connections. In Proceedings of the 2013 Conference on the Analysis of Mobile Phone Datasets. MIT, 323--329.Google ScholarGoogle Scholar
  56. H. Xiong, D. Zhang, D. Zhang, V. Gauthier, K. Yang, and M. Becker. 2013b. MPaaS: Mobility prediction as a service in telecom cloud. Information Systems Frontiers (2013), 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. J. Zheng and L. M. Ni. 2012. An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing. ACM, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. EEMC: Enabling Energy-Efficient Mobile Crowdsensing with Anonymous Participants

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Intelligent Systems and Technology
        ACM Transactions on Intelligent Systems and Technology  Volume 6, Issue 3
        Survey Paper, Regular Papers and Special Section on Participatory Sensing and Crowd Intelligence
        May 2015
        319 pages
        ISSN:2157-6904
        EISSN:2157-6912
        DOI:10.1145/2764959
        • Editor:
        • Huan Liu
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 April 2015
        • Accepted: 1 July 2014
        • Revised: 1 June 2014
        • Received: 1 January 2014
        Published in tist Volume 6, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader