skip to main content
survey

Thermal-Aware Scheduling in Green Data Centers

Published:17 February 2015Publication History
Skip Abstract Section

Abstract

Data centers can go green by saving electricity in two major areas: computing and cooling. Servers in data centers require a constant supply of cold air from on-site cooling mechanisms for reliability. An increased computational load makes servers dissipate more power as heat and eventually amplifies the cooling load. In thermal-aware scheduling, computations are scheduled with the objective of reducing the data-center-wide thermal gradient, hotspots, and cooling magnitude. Complemented by heat modeling and thermal-aware monitoring and profiling, this scheduling is energy efficient and economical. A survey is presented henceforth of thermal-ware scheduling and associated techniques for green data centers.

References

  1. Adaptive Computing. 2015a. Moab HPC Suite. Retrieved from http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-suite-grid-option/.Google ScholarGoogle Scholar
  2. Adaptive Computing. 2015b. TORQUE Resource Manager. Retrieved from http://www.adaptivecomputing.com/products/open-source/torque/.Google ScholarGoogle Scholar
  3. N. Ahuja, C. Rego, S. Ahuja, M. Warner, and A. Docca. 2011. Data center efficiency with higher ambient temperatures and optimized cooling control. In Proceedings of the 2011 27th Annual IEEE Proceedings of the Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM'11). 105--109.Google ScholarGoogle Scholar
  4. N. Ahuja, C. W. Rego, S. Ahuja, S. Zhou, and S. Shrivastava. 2013. Real time monitoring and availability of server airflow for efficient data center cooling. In Proceedings of the 2013 29th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM'13). 243--247.Google ScholarGoogle Scholar
  5. AMD. 1995. CPU Thermal Management. Retreived from http://datasheets.chipdb.org/AMD/486_5x86/18448D.pdf.Google ScholarGoogle Scholar
  6. AMD. 2009. ACP—The Truth about Power Consumption Starts Here. Retrieved from http://sites.amd.com/us/Documents/43761C_ACP_WP_EE.pdf.Google ScholarGoogle Scholar
  7. A. S. Arani. 2007. Online thermal-aware scheduling for multiple clock domain CMPs. In Proceedings of the 2007 IEEE International SOC Conference. 137--140.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Arlitt, C. Bash, S. Blagodurov, Y. Chen, T. Christian, D. Gmach, et al. 2012. Towards the design and operation of net-zero energy data centers. In Proceedings of the 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm'12). 552--561.Google ScholarGoogle ScholarCross RefCross Ref
  9. ARS-Techniqa. 2008. NVIDIA Denies Rumors of Faulty Chips, Mass GPU Failures. Retrieved from http://arstechnica.com/hardware/news/2008/07/nvidia-denies-rumors-of-mass-gpu-failures.ars.Google ScholarGoogle Scholar
  10. P. Artman, D. Moss, and G. Bennett. 2002. Dell™ PowerEdge™1650: Rack Impacts on Cooling for High Density Servers. Retrieved from http://www.dell.com/downloads/global/products/pedge/en/rack_coolingdense.doc.Google ScholarGoogle Scholar
  11. ASHRAE-TC-9.9. 2011. 2011 Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance. Retrieved from http://www.eni.com/green-data-center/it_IT/static/pdf/ASHRAE_1.pdf.Google ScholarGoogle Scholar
  12. H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez. 2001. Dynamic and aggressive scheduling techniques for power-aware real-time systems. In Proceedings of the 22nd IEEE Real-Time Systems Symposium. 95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Baikie and L. Hosman. 2011. Green cloud computing in developing regions: Moving data and processing closer to the end user. In Proceedings of the Telecom World (ITU WT), 2011 Technical Symposium at ITU. 24--28.Google ScholarGoogle Scholar
  14. A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. K. S. Gupta. 2010. Cooling-aware and thermal-aware workload placement for green HPC data centers. In Proceedings of the International Green Computing Conference. 245--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. K. S. Gupta. 2011. Integrating cooling awareness with thermal aware workload placement for HPC data centers. Sustainable Computing: Informatics and Systems 1, 2 (2011), 134--150.Google ScholarGoogle ScholarCross RefCross Ref
  16. L. A. Barroso and U. Holzle. 2007. The case for energy-proportional computing. Computer 40, 12 (2007), 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Bash and G. Forman. 2007a. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. HP Laboratories Technical Reports (HPL-2007-62). Retrieved from http://www.hpl.hp.com/techreports/2007/HPL-2007-62.pdf.Google ScholarGoogle Scholar
  18. C. Bash and G. Forman. 2007b. Data center workload placement for energy efficiency. ASME Conference Proceedings 2007, 42770 (2007), 733--741.Google ScholarGoogle Scholar
  19. C. E. Bash, C. D. Patel, and R. K. Sharma. 2006. Dynamic thermal management of air cooled data centers. In Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM'06).Google ScholarGoogle Scholar
  20. Y. Bo, J. Kephart, H. Hamann, and S. Barabasi. 2011. Hotspot diagnosis on logical level. In Proceedings of the 2011 7th International Conference on Network and Service Management (CNSM'11). 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Bruneo. 2014. A stochastic model to investigate data center performance and QoS in IaaS cloud computing systems. IEEE Transactions on Parallel and Distributed Systems 25, 3 (2014), 560--569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. W. Cameron. 2010. The challenges of energy-proportional computing. Computer 43, 5 (2010), 82--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Z. Changyun, G. Zhenyu, S. Li, R. P. Dick, and R. Joseph. 2008. Three-dimensional chip-multiprocessor run-time thermal management. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 8 (2008), 1479--1492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Chantem, R. P. Dick, and X. S. Hu. 2008. Temperature-aware scheduling and assignment for hard real-time applications on MPSoCs. In Proceedings of the Design, Automation and Test in Europe (DATE'08). 288--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Chantem, X. S. Hu, and R. P. Dick. 2009. Online work maximization under a peak temperature constraint. In Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design. 105--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. T. Chaudhry, T. C. Ling, S. A. Hussain, and A. Manzoor. 2014. Minimizing thermal-stress for data center servers through thermal-aware relocation. Scientific World Journal 2014, (2014).Google ScholarGoogle Scholar
  27. H. Chen, M. Song, J. Song, A. Gavrilovska, and K. Schwan. 2011. HEaRS: A hierarchical energy-aware resource scheduler for virtualized data centers. In Proceedings of the 2011 IEEE International Conference on Cluster Computing. 508--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose. 2007. Thermal-aware task scheduling at the system software level. In Proceedings of the International Symposium on Low Power Electronics and Design. 213--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Y. Chong, S. P. Lee, and T. C. Ling. 2014. Prioritizing and fulfilling quality attributes for virtual lab development through application of fuzzy analytic hierarchy process and software development guidelines. Malaysian Journal of Computer Science 27, 1 (2014).Google ScholarGoogle Scholar
  30. S. W. Chung and K. Skadron. 2006. A novel software solution for localized thermal problems. In Proceedings of the 4th International Conference on Parallel and Distributed Processing and Applications. 63--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici. 2009a. Dynamic thermal management in 3D multicore architectures. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE'09). 1410--1415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. K. Coskun, T. S. Rosing, and K. Whisnant. 2007. Temperature aware task scheduling in MPSoCs. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE'07). 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. K. Coskun, T. S. Rosing, and K. C. Gross. 2008a. Temperature management in multiprocessor SoCs using online learning. In Proceedings of the 45th Annual Design Automation Conference. 890--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. K. Coskun, T. S. Rosing, and K. C. Gross. 2008b. Proactive temperature balancing for low cost thermal management in MPSoCs. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. 250--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. K. Coskun, T. S. Rosing, and K. C. Gross. 2008c. Proactive temperature management in MPSoCs. In Proceedings of the 13th International Symposium on Low Power Electronics and Design. Bangalore, India. 165--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross. 2008d. Temperature-aware MPSoC scheduling for reducing hot spots and gradients. In Proceedings of the Asia and South Pacific Design Automation Conference. 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross. 2008e. Static and dynamic temperature-aware scheduling for multiprocessor SoCs. IEEE Transactions on Very Large Scale Integrates Systems 16, 9 (2008e), 1127--1140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. K. Coskun, T. S. Rosing, and K. C. Gross. 2009b. Utilizing predictors for efficient thermal management in multiprocessor SoCs. Transactions on Computer-Aided Design of Integrated Circuit Systems 28, 10 (2009b), 1503--1516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Donald and M. Martonosi. 2006. Techniques for multicore thermal management: Classification and new exploration. SIGARCH Computer Architecture News 34, 2 (2006), 78--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. EE-Times. 2008. The Truth about Last Year's Xbox 360 Recall. Retrieved from http://www.eetimes.com/electronicsnews/4077187/The-truth-about-last-year-s-Xbox-360-recall.Google ScholarGoogle Scholar
  41. E. Pakbaznia, M. Ghasemazar, and M. Pedram. 2010. Temperature-aware dynamic resource provisioning in a power-optimized datacenter. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE'10). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. ENERGY-STAR. 2010. Data Center Industry Leaders Reach Agreement on Guiding Principles for Energy Efficiency Metrics. Retrieved from http://www.energystar.gov/ia/partners/prod_development/downloads/DataCenters_AgreementGuidingPrinciples.pdf?262a-86ba.Google ScholarGoogle Scholar
  43. Energy Star EPA. 2007. Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431. Retrieved from http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf?6133-414f.Google ScholarGoogle Scholar
  44. X. Fan, W.-D. Weber, and L. A. Barroso. 2007. Power provisioning for a warehouse-sized computer. SIGARCH Computer Architecture News 35, 2 (2007), 13--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. E. Frachtenberg, D. Lee, M. Magarelli, V. Mulay, and J. Park. 2012. Thermal design in the open compute datacenter. In Proceedings of the 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm'12). 530--538.Google ScholarGoogle Scholar
  46. Freescale. 2008. Thermal Analysis of Semiconductor Systems. Retrieved from http://cache.freescale.com/files/analog/doc/white_paper/BasicThermalWP.pdf.Google ScholarGoogle Scholar
  47. S. K. Garg and R. Buyya. 2011. Green Cloud Computing and Environmental Sustainability. Retrieved from http://www.cloudbus.org/papers/Cloud-EnvSustainability2011.pdf.Google ScholarGoogle Scholar
  48. C. Gonzales and H. M. Wang. 2008. Thermal Design Considerations for Embedded Applications. Retrieved from http://download.intel.com/design/intarch/papers/321055.pdf.Google ScholarGoogle Scholar
  49. Google. 2012. Take a Walk Through a Google Data Center. Retrieved from http://www.google.com/about/datacenters/inside/streetview/.Google ScholarGoogle Scholar
  50. Greenpeace. 2011. How Dirty Is Your Data? A Look at the Energy Choices That Power Cloud Computing. Retrieved from http://www.greenpeace.org/international/Global/international/publications/climate/2011/Cool%20IT/dirty-data-report-greenpeace.pdf.Google ScholarGoogle Scholar
  51. E. M. Greitzer, Z. S. Spakovszky, and I. A. Waitz. 2008. Specific Heats: The Relation between Temperature Change and Heat. Retrieved from http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node18.html.Google ScholarGoogle Scholar
  52. HotSpot. 2014. HotSpot 5.0. Retrieved from http://lava.cs.virginia.edu/HotSpot/.Google ScholarGoogle Scholar
  53. S. Huck. 2011. Measuring Processor Power TDP vs. ACP. Retrieved from http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf.Google ScholarGoogle Scholar
  54. J. Hwisung and M. Pedram. 2006. Stochastic dynamic thermal management: A markovian decision-based approach. In Proceedings of the International Conference on Computer Design (ICCD'06). 452--457.Google ScholarGoogle Scholar
  55. Intel. 2011. Intel® Core™ i7-900 Desktop Processor Extreme Edition Series and Intel® Core™ i7-900 Desktop Processor Series on 32-nm Process. Retrieved from http://download.intel.com/design/processor/designex/320837.pdf.Google ScholarGoogle Scholar
  56. Intel. 2014. Intel® Processor Feature Filter. Retrieved from http://ark.intel.com/search/advanced?FamilyText =Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5%20v2%20Family.Google ScholarGoogle Scholar
  57. J. Jaffari and M. Anis. 2008. Statistical thermal profile considering process variations: Analysis and applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 6 (2008), 1027--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. C. Jian-Jia, H. Chia-Mei, and K. Tei-Wei. 2007. On the minimization of the instantaneous temperature for periodic real-time tasks. In Proceedings of the 13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07) 236--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. M. Jonas, G. Varsamopoulos, and S. Gupta. 2007. On developing a fast, cost-effective and non-invasive method to derive data center thermal maps. In Proceedings of the 2007 IEEE International Conference on Cluster Computing. 474--475. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Jonas, G. Varsamopoulos, and S. K. S. Gupta. 2010. Non-invasive thermal modeling techniques using ambient sensors for greening data centers. In Proceedings of the 2010 39th International Conference on Proceedings of the Parallel Processing Workshops (ICPPW'10). 453--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Y. Jun, Z. Xiuyi, M. Chrobak, Z. Youtao, and J. Lingling. 2008. Dynamic thermal management through task scheduling. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS'08). 191--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Q. Junmei, L. Li, L. Liang, T. Yuelong, and C. Jiming. 2013. Smart temperature monitoring for data center energy efficiency. In Proceedings of the 2013 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI'13). 360--365.Google ScholarGoogle Scholar
  63. J. Kaiser, J. Bean, T. Harvey, M. Patterson, and J. Winiecki. 2011. Survey Results: Data Center Economizer Use. Retrieved from http://www.thegreengrid.org/Global/Content/white-papers/WP41-SurveyResultsDataCenterEconomizerUse.Google ScholarGoogle Scholar
  64. O. Khan and S. Kundu. 2008. A framework for predictive dynamic temperature management of microprocessor systems. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. 258--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. K. Khankari. 2009. Rack enclosures a crucial link in airflow management in data centers. ASHRAE Journal (Aug 2009), 48.Google ScholarGoogle Scholar
  66. J. Kong, S. W. Chung, and K. Skadron. 2012. Recent thermal management techniques for microprocessors. ACM Computer Surveys 44, 3 (2012), 1--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. J. Koomey. 2008. Worldwide electricity used in data centers. Environmental Research Letters 3, 034008 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  68. J. Koomey. 2011. Growth in Data Center Electricity Use 2005 to 2010. Analytics Press.Google ScholarGoogle Scholar
  69. J. Koomey, K. Brill, P. Turner, J. Stanley, and B. Taylor. 2007. A Simple Model for Determining True Total Cost of Ownership for Data Centers. Uptime Institute White Paper, Version 2, (2007).Google ScholarGoogle Scholar
  70. J. Koomey, K. Brill, P. Turner, J. Stanley, and B. Taylor. 2008. A Simple Model for Determining True Total Cost of Ownership for Data Centers. Uptime Institute 2.1 (2008).Google ScholarGoogle Scholar
  71. A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. 2006. Near-optimal sensor placements: Maximizing information while minimizing communication cost. In Proceedings of the 5th International Conference on Information Processing in Sensor Networks (IPSN'06). 2--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. 2006. HybDTM: A coordinated hardware-software approach for dynamic thermal management. In Proceedings of the 2006 43rd ACM/IEEE Design Automation Conference. 548--553. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. E. Kursun and C. Chen-Yong. 2008. Variation-aware thermal characterization and management of multi-core architectures. In Proceedings of the IEEE International Conference on Computer Design (ICCD'08). 280--285.Google ScholarGoogle Scholar
  74. R. Lavanya and V. Ramachandran. 2013. Cloud based video on demand model with performance enhancement. Malaysian Journal of Computer Science 24, 2 (2013).Google ScholarGoogle Scholar
  75. E. K. Lee, I. Kulkarni, D. Pompili, and M. Parashar. 2010. Proactive thermal management in green datacenters. Journal of Supercomputing 51, (2010), 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Y. Lin and Q. Gang. 2007. ALT-DVS: Dynamic voltage scaling with awareness of leakage and temperature for real-time systems. In Proceedings of the 2nd NASA/ESA Conference on Adaptive Hardware and Systems (AHS'07).660--670. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. H. Liu, E. K. Lee, D. Pompili, and X. Kong. 2013. Thermal camera networks for large datacenters using real-time thermal monitoring mechanism. Journal of Supercomputing 64, 2 (2013), 383--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, et al. 2012. Renewable and cooling aware workload management for sustainable data centers. SIGMETRICS Performance Evaluation Review 40, 1 (2012), 175--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. W. Lizhe, G. von Laszewski, J. Dayal, and T. R. Furlani. 2009. Thermal aware workload scheduling with backfilling for green data centers. In Proceedings of the 2009 IEEE 28th International Performance Computing and Communications Conference (IPCCC'09). 289--296.Google ScholarGoogle Scholar
  80. M. Marwah, R. Sharma, and C. Bash. 2010. Thermal anomaly prediction in data centers. In 2010 12th IEEE Intersociety Conference on Proceedings of the Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA. 1--7.Google ScholarGoogle Scholar
  81. Binu K. Mathew. 2004. The Perception Processor. Ph.D. Dissertation, The University of Utah, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. P. Mell and T. Grance. 2011. The NIST Definition of Cloud Computing. Available at: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.Google ScholarGoogle Scholar
  83. Mentor-Graphics. 2014. FloVENT. Retrieved from http://www.mentor.com/products/mechanical/products/flovent.Google ScholarGoogle Scholar
  84. A. Merkel, F. Bellosa, and A. Weissel. 2005. Event-driven thermal management in SMP systems. In Proceedings of the Second Workshop on Temperature-Aware Computer Systems (TACS'05).Google ScholarGoogle Scholar
  85. J. Moore, J. Chase, P. Ranganathan, and R. Sharma. 2005. Making scheduling “cool”: Temperature-aware workload placement in data centers. In Proceedings of the Annual Conference on USENIX Annual Technical Conference. 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. T. Mukherjee, T. Qinghui, C. Ziesman, S. K. S. Gupta, and P. Cayton. 2007. Software architecture for dynamic thermal management in datacenters. In Proceedings of the 2nd International Conference on Proceedings of the Communication Systems Software and Middleware (COMSWARE'07). 1--11.Google ScholarGoogle Scholar
  87. T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. S. Gupta, and S. Rungta. 2009. Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Computer Networks 53, 17 (2009), 2888--2904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, et al. 2008. Thermal balancing policy for streaming computing on multiprocessor architectures. In Proceedings of the Design, Automation and Test in Europe (DATE'08). 734--739. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, et al. 2008. Temperature control of high-performance multi-core platforms using convex optimization. In Proceedings of the Conference on Design, Automation and Test in Europe, Munich, Germany. 110--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K. Krishnan, et al. 2006. Power and thermal management in the Intel core duo processor. Intel Technology Journal, 10, 2 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  91. L. Parolini, B. Sinopoli, and B. H. Krogh. 2008. Reducing data center energy consumption via coordinated cooling and load management. In Proceedings of the Conference on Power Aware Computing and Systems. 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang. 2012. A cyber-physical systems approach to data center modeling and control for energy efficiency. Proceedings of the IEEE 100, 1 (2012), 254--268.Google ScholarGoogle ScholarCross RefCross Ref
  93. T. Qinghui, S. K. S. Gupta, and G. Varsamopoulos. 2008. Energy-efficient, thermal-aware task scheduling for homogeneous, high performance computing data centers: A cyber-physical approach. IEEE Transactions on Parallel and Distributed Systems 19, 11 (2008), 1458--1472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. T. Qinghui, T. Mukherjee, S. K. S. Gupta, and P. Cayton. 2006. Sensor-based fast thermal evaluation model for energy efficient high-performance datacenters. In Proceedings of the 4th International Conference on Intelligent Sensing and Information Processing (ICISIP'06). 203--208.Google ScholarGoogle Scholar
  95. D. Rajan and P. S. Yu. 2007. On temperature-aware scheduling for single-processor systems. In Proceedings of the 14th International Conference on High Performance Computing. 342--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. D. Rajan and P. S. Yu. 2008. Temperature-aware scheduling: When is system-throttling good enough? In Proceedings of the 9th International Conference on Web-Age Information Management. 397--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole. 2010. Energy-efficient application-aware online provisioning for virtualized clouds and data centers. In Proceedings of the 2010 International Green Computing Conference. 31--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. I. Rodero, E. K. Lee, D. Pompili, M. Parashar, M. Gamell, and R. J. Figueiredo. 2010. Towards energy-efficient reactive thermal management in instrumented datacenters. In Proceedings of the 11th IEEE/ACM International Conference on Grid Computing.Google ScholarGoogle Scholar
  99. I. Rodero, H. Viswanathan, E. K. Lee, M. Gamell, D. Pompili, and M. Parashar. 2012. Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure. Journal of Grid Computing 10, 3 (2012), 447--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Z. Rongliang, W. Zhikui, A. McReynolds, C. E. Bash, T. W. Christian, and R. Shih. 2012. Optimization and control of cooling microgrids for data centers. In Proceedings of the 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm'12). 338--343.Google ScholarGoogle Scholar
  101. K. Sankaranarayanan. 2009. Thermal Modeling and Management of Microprocessors. Doctor of Philosophy Computer Science, University of Virginia. Retrieved from http://www.cs.virginia.edu/∼skadron/Papers/sankaranarayanan_dissertation.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. S. Sharifi, L. ChunChen, and T. S. Rosing. 2008. Accurate temperature estimation for efficient thermal management. In Proceedings of the 9th International Symposium on Quality Electronic Design, 2008. (ISQED'08). 137--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. SIA. 2009. International Technology Roadmap for Semiconductors (ITRS). Retrieved from http://www.itrs.net/reports.html.Google ScholarGoogle Scholar
  104. J. W. Sofia. 1995. Fundamentals of thermal resistance measurement. Analysis Tech, 11, (1995).Google ScholarGoogle Scholar
  105. StackExchange. 2013. Finding a CPU's Capacitive Load. Retrieved from http://electronics.stackexchange.com/questions/82908/finding-a-cpus-capacitive-load.Google ScholarGoogle Scholar
  106. C. Sun, L. Shang, and R. P. Dick. 2007. Three-dimensional multiprocessor system-on-chip thermal optimization. In Proceedings of the 5th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis. 117--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. C. S. Woo and K. Skadron. 2006. Using on-chip event counters for high-resolution, real-time temperature measurement. In Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM'06). 114--120.Google ScholarGoogle Scholar
  108. Q. Tang, S. Gupta, and G. Varsamopoulos. 2007. Thermal-aware task scheduling for data centers through minimizing heat recirculation. In Proceedings of the 2007 IEEE International Conference on Cluster Computing. 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Q. Tang, S. K. S. Gupta, D. Stanzione, and P. Cayton. 2006. Thermal-aware task scheduling to minimize energy usage of blade server based datacenters. In Proceedings of the 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing. Indianapolis, IN. 195--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. TechTarget. 2011. Data Center Design Tips: What You Should Know About ASHRAE TC 9.9. Retrieved from http://searchdatacenter.techtarget.com/tip/Data-center-design-tips-What-you-should-know-about-ASHRAE-TC-99.Google ScholarGoogle Scholar
  111. V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. 1998. Reducing power in high-performance microprocessors. In Proceedings of the 35th annual Design Automation Conference. 732--737. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. R. Tolosana-Calasanz, J. Á. Bañares, C. Pham, and O. F. Rana. 2012. Enforcing QoS in scientific workflow systems enacted over Cloud infrastructures. Journal of Computer and System Sciences 78, 5 (2012), 1300--1315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. V. V. Vazirani. 2001. Approximation Algorithms. Springer-Verlag, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. V. Venkatachalam and M. Franz. 2005. Power reduction techniques for microprocessor systems. ACM Computer Surveys 37, 3 (2005), 195--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. K. Vikas. 2012. Temperature-aware virtual machine scheduling in green clouds. Master's Thesis, Thapar University, Patiala, India. Retrieved from http://dspace.thapar.edu:8080/dspace/bitstream/10266/1851/1/vikas+thesis-pdf.pdf.Google ScholarGoogle Scholar
  116. R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur. 2000. Thermal performance challenges from silicon to systems. Intel Technology Journal (2000).Google ScholarGoogle Scholar
  117. H. Viswanathan, E. K. Lee, and D. Pompili. 2011. Self-organizing sensing infrastructure for autonomic management of green datacenters. IEEE Network 25, 4 (2011), 34--40.Google ScholarGoogle ScholarCross RefCross Ref
  118. VMware. 2006. Virtualization Overview. Available at: http://www.vmware.com/pdf/virtualization.pdf.Google ScholarGoogle Scholar
  119. VMware. 2010. Host Power Management in VMware vSphere® 5. Retrieved from http://www.vmware.com/files/pdf/hpm-perf-vsphere5.pdf.Google ScholarGoogle Scholar
  120. VMware. 2011. What's New in VMware vSphere™ 5.0 Platform. Retrieved from http://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-50-Platform-Technical-Whitepaper.pdf.Google ScholarGoogle Scholar
  121. VMware. 2012. What's New in VMware vSphere™ 5.1 Platform. Retrieved from http://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-51-Platform-Technical-Whitepaper.pdf.Google ScholarGoogle Scholar
  122. L. Wang, S. Khan, and J. Dayal. 2012. Thermal aware workload placement with task-temperature profiles in a data center. Journal of Supercomputing 61, 3 (2012), 780--803.Google ScholarGoogle ScholarCross RefCross Ref
  123. L. Wang, G. von Laszewski, J. Dayal, X. He, A. J. Younge, and T. R. Furlani. 2009. Towards thermal aware workload scheduling in a datacenter. In Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks. 116--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, et al. 2010. Architecting for power management: The IBM® POWER7™ approach. In Proceedings of the 2010 IEEE 16th International Symposium on High Performance Computer Architecture (HPCA'10). 1--11.Google ScholarGoogle Scholar
  125. R. Waugh. 2011. That's Really Cool: Facebook Puts Your Photos Into the Deep Freeze as It Unveils Massive New Five Acre Data Center Near Arctic Circle. Retrieved from http://www.dailymail.co.uk/sciencetech/article-2054168/Facebook-unveils-massive-data-center-Lulea-Sweden.html.Google ScholarGoogle Scholar
  126. H. Wei. 2008. Accurate, pre-RTL temperature-aware design using a parameterized, geometric thermal model. IEEE Transactions on Computers 57, 9 (2008), 1277--1288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. L. Wu, S. K. Garg, and R. Buyya. 2012. SLA-based admission control for a Software-as-a-Service provider in Cloud computing environments. Journal of Computer and System Sciences 78, 5 (2012), 1280--1299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. W. Xiaodong, W. Xiaorui, X. Guoliang, C. Jinzhu, L. Cheng-Xian, and C. Yixin. 2013. Intelligent sensor placement for hot server detection in data centers. IEEE Transactions on Parallel and Distributed Systems 24, 8 (2013), 1577--1588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Z. Xiuyi, X. Yi, D. Yu, Z. Youtao, and Y. Jun. 2008. Thermal management for 3D processors via task scheduling. In Proceedings of the 37th International Conference on Parallel Processing (ICPP'08). 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. I. Yeo, C. C. Liu, and E. J. Kim. 2008. Predictive dynamic thermal management for multicore systems. In Proceedings of the 45th Annual Design Automation Conference. 734--739. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. C. Yuan, D. Gmach, C. Hyser, Z. Wang, C. Bash, C. Hoover, et al. 2010. Integrated management of application performance, power and cooling in data centers. In Proceedings of the Network Operations and Management Symposium (NOMS'10). 615--622.Google ScholarGoogle Scholar
  132. F. Zanini, D. Atienza, and D. G. Micheli. 2009. A control theory approach for thermal balancing of MPSoC. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC'09). 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. S. Zhang and K. S. Chatha. 2007. Approximation algorithm for the temperature-aware scheduling problem. In Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design. 281--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. W. Zhikui, C. Yuan, D. Gmach, S. Singhal, B. J. Watson, W. Rivera, et al. 2009. AppRAISE: Application-level performance management in virtualized server environments. IEEE Transactions on Network and Service Management 6, 4 (2009), 240--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. 2012. Survey of energy-cognizant scheduling techniques. IEEE Transactions on Parallel and Distributed Systems 24, 7 (2012), 1447--1464. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Thermal-Aware Scheduling in Green Data Centers

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 47, Issue 3
        April 2015
        602 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/2737799
        • Editor:
        • Sartaj Sahni
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 February 2015
        • Accepted: 1 October 2014
        • Revised: 1 April 2014
        • Received: 1 January 2013
        Published in csur Volume 47, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • survey
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader