skip to main content
10.1145/2702123.2702327acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

A Layered Fabric 3D Printer for Soft Interactive Objects

Published:18 April 2015Publication History

ABSTRACT

We present a new type of 3D printer that can form precise, but soft and deformable 3D objects from layers of off-the-shelf fabric. Our printer employs an approach where a sheet of fabric forms each layer of a 3D object. The printer cuts this sheet along the 2D contour of the layer using a laser cutter and then bonds it to previously printed layers using a heat sensitive adhesive. Surrounding fabric in each layer is temporarily retained to provide a removable support structure for layers printed above it. This process is repeated to build up a 3D object layer by layer. Our printer is capable of automatically feeding two separate fabric types into a single print. This allows specially cut layers of conductive fabric to be embedded in our soft prints. Using this capability we demonstrate 3D models with touch sensing capability built into a soft print in one complete printing process, and a simple LED display making use of a conductive fabric coil for wireless power reception.

Skip Supplemental Material Section

Supplemental Material

pn1055-file3.mp4

mp4

66.6 MB

p1789-peng.mp4

mp4

137.4 MB

References

  1. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics 33, 4 (July 2014), 96:1--96:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Buechley, L., Eisenberg, M., Catchen, J., and Crockett, A. The lilypad arduino: Using computational textiles to investigate engagement, aesthetics, and diversity in computer science education. In CHI '08, ACM (2008), 423--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cherenack, K., Zysset, C., Kinkeldei, T., Münzenrieder, N., and Tröster, G. Wearable electronics: Woven electronic fibers with sensing and display functions for smart textiles. Advanced Materials 22, 45 (2010), 5071.Google ScholarGoogle Scholar
  4. Drives, F. NinjaFlex. http://www.fennerdrives.com/ ninjaflex3dprinting/_/3d/.Google ScholarGoogle Scholar
  5. Fabrisonic. Soniclayer 4000. http://fabrisonic.com.Google ScholarGoogle Scholar
  6. Feygin, M., Shkolnik, A., Diamond, M. N., and Dvorskiy, E. Laminated object manufacturing system, 1998. US Patent 5,730,817.Google ScholarGoogle Scholar
  7. Gellersen, H., Kortuem, G., and Schmidt, A. Physical prototypnig with smart-its. Pervasive Computing 04 (2004), 1536--1268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Greenberg, S., and Fitchett, C. Phidgets: Easy development of physical interfaces through physical widgets. In UIST '01, ACM (2001), 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A., and Häkkilä, J. Evaluating capacitive touch input on clothes. In MobileHCI '08, ACM (2008), 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hudson, S. E. Printing teddy bears: A technique for 3D printing of soft interactive objects. In CHI '14, ACM (2014), 459--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hudson, S. E., and Mankoff, J. Rapid construction of functioning physical interfaces from cardboard, thumbtacks, tin foil and masking tape. In UIST '06, ACM (2006), 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ishiguro, Y., and Poupyrev, I. 3D printed interactive speakers. In CHI '14, ACM (2014), 1733--1742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., Dietz, P. H., and Leigh, D. The calder toolkit: Wired and wireless components for rapidly prototyping interactive devices. In DIS '04, ACM (2004), 167--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. MakerBot. Flexible filament. https://store.makerbot.com/flexible-filament.Google ScholarGoogle Scholar
  15. Mcor Technonlogies. Mcor IRIS. http://mcortechnologies.com/3d-printers/iris/.Google ScholarGoogle Scholar
  16. Mueller, S., Im, S., Gurevich, S., Teibrich, A., Pfisterer, L., Guimbretire, F., and Baudisch, P. WirePrint: Fast 3D printed previews. In UIST'14 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mueller, S., Lopes, P., and Baudisch, P. Interactive construction: Interactive fabrication of functional mechanical devices. In UIST '12, ACM (2012), 599--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mueller, S., Mohr, T., Guenther, K., Frohnhofen, J., and Baudisch, P. fabrickation: Fast 3d printing of functional objects by integrating construction kit building blocks. In CHI '14, ACM (2014), pp. 3827--3834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ngai, G., Chan, S. C., Cheung, J. C., and Lau, W. W. The teeboard: An education-friendly construction platform for e-textiles and wearable computing. In CHI '09, ACM (2009), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Perner-Wilson, H., and Buechley, L. Making textile sensors from scratch. In TEI '10, ACM (2010), 349--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pfeifer, R., Lungarella, M., and Iida, F. The challenges ahead for bio-inspired 'soft' robotics. Communications of the ACM 55, 11 (Nov. 2012), 76--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4 (July 2013), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rosner, D., and Ryokai, K. Weaving memories into handcrafted artifacts with spyn. In CHI EA '08, ACM (2008), 2331--2336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Savage, V., Chang, C., and Hartmann, B. Sauron: embedded single-camera sensing of printed physical user interfaces. In The 26th Annual ACM Symposium on User Interface Software and Technology, UIST'13, St. Andrews, United Kingdom, October 8--11, 2013 (2013), 447--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Savage, V., Zhang, X., and Hartmann, B. Midas: Fabricating custom capacitive touch sensors to prototype interactive objects. In UIST '12, ACM (2012), 579--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shilkrot, R., Maes, P., and Zoran, A. Physical rendering with a digital airbrush. In ACM SIGGRAPH 2014 Emerging Technologies, SIGGRAPH '14, ACM (New York, NY, USA, 2014), 19:1--19:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Slyper, R., Poupyrev, I., and Hodgins, J. Sensing through structure: Designing soft silicone sensors. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, ACM (2011), 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Song, H., Guimbretiére, F., Hu, C., and Lipson, H. Modelcraft: Capturing freehand annotations and edits on physical 3d models. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, UIST '06, ACM (2006), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stratasys. Objet connex multi-material printer. http://www.stratasys.com/3d-printers/ design-series/objet-connex500.Google ScholarGoogle Scholar
  30. Sugiura, Y., Lee, C., Ogata, M., Withana, A., Makino, Y., Sakamoto, D., Inami, M., and Igarashi, T. Pinoky: A ring that animates your plush toys. In CHI '12, ACM (2012), 725--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Truong, K. N., Richter, H., Hayes, G. R., and Abowd, G. D. Devices for sharing thoughts and affection at a distance. In CHI EA '04, ACM (2004), 1203--1206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. White, D. Ultrasonic object consolidation, 2003. US Patent 6,519,500.Google ScholarGoogle Scholar
  33. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. Printed optics: 3D printing of embedded optical elements for interactive devices. In UIST '12, ACM (2012), 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yoshikai, T., Fukushima, H., Hayashi, M., and Inaba, M. Development of soft stretchable knit sensor for humanoids' whole-body tactile sensibility (2009). 624--631.Google ScholarGoogle ScholarCross RefCross Ref
  35. Zoran, A., Shilkrot, R., and Paradiso, J. Human-computer interaction for hybrid carving. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, ACM (New York, NY, USA, 2013), 433--440. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Layered Fabric 3D Printer for Soft Interactive Objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader