skip to main content
10.1145/2702123.2702604acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Exploring Interactions with Physically Dynamic Bar Charts

Published:18 April 2015Publication History

ABSTRACT

Visualizations such as bar charts help users reason about data, but are mostly screen-based, rarely physical, and almost never physical and dynamic. This paper investigates the role of physically dynamic bar charts and evaluates new interactions for exploring and working with datasets rendered in dynamic physical form. To facilitate our exploration we constructed a 10x10 interactive bar chart and designed interactions that supported fundamental visualisation tasks, specifically; annotation, filtering, organization, and navigation. The interactions were evaluated in a user study with 17 participants. Our findings identify the preferred methods of working with the data for each task i.e. directly tapping rows to hide bars, highlight the strengths and limitations of working with physical data, and discuss the challenges of integrating the proposed interactions together into a larger data exploration system. In general, physical interactions were intuitive, informative, and enjoyable, paving the way for new explorations in physical data visualizations.

Skip Supplemental Material Section

Supplemental Material

p3237-taher.mp4
suppl.mov

Supplemental video

References

  1. Alexander, J., Lucero, A., & Subramanian, S. (2012). Tilt displays: designing display surfaces with multi-axis tilting and actuation. In Proc. MobileHCI, pp. 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Brehmer, M. and Munzner, T. (2013). A multi-level typology of abstract visualization tasks. Visualization and Computer Graphics, IEEE Transactions on 19, 12, pp. 2376--2385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brown, C. and Hurst, A. (2012). VizTouch: automatically generated tactile visualizations of coordinate spaces. In Proc. TEI, pp. 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Card, S.K., Mackinlay, J.D., and Shneiderman, B. (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Pub. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Coelho, M., Ishii, H., & Maes, P. (2008). Surflex: a programmable surface for the design of tangible interfaces. In CHI'08 EA, pp. 3429--3434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Follmer, S., Leithinger, D., and Ishii, A.O.A.H.H. (2013). inFORM: dynamic physical affordances and constraints through shape and object actuation. In Proc. UIST, pp. 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fritz, J. P., & Barner, K. E. (1999). Design of a haptic data visualization system for people with visual impairments. IEEE Transactions on Rehabilitation Engineering, 7(3), pp. 372--384.Google ScholarGoogle ScholarCross RefCross Ref
  8. Greenberg, S. and Buxton, B. Usability evaluation considered harmful (some of the time). (2008). In Proc. CHI, pp. 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hardy, J., Ellis, C., Alexander, J., & Davies, N. (2013). Ubi Displays: A Toolkit for the Rapid Creation of Interactive Projected Displays. In The International Symposium on Pervasive Displays.Google ScholarGoogle Scholar
  10. Harrison, C., & Hudson, S. E. (2009). Providing dynamically changeable physical buttons on a visual display. In Proc. CHI, pp. 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Heer, J. and Shneiderman, B. (2012). Interactive Dynamics for Visual Analysis. Commun. ACM 55, 4, pp. 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hornbæk, K. Some Whys and Hows of Experiments in Human-Computer Interaction. (2013). Foundations and Trends in HCI 5, 4, pp. 299--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Huron, S., Jansen, Y., and Carpendale, S. Constructing Visual Representations: Investigating the Use of Tangible Tokens. (2014). IEEE Transactions on Visualization and Computer Graphics 20, 12, 1.Google ScholarGoogle ScholarCross RefCross Ref
  14. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. (2001). Project FEELEX: adding haptic surface to graphics. In Proc. SIGGRAPH, pp. 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jansen, Y., Dragicevic, P., and Fekete, J.-D. (2013). Evaluating the Efficiency of Physical Visualizations. In Proc. CHI. pp. 2593--2602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jansen, Y. and Dragicevic, P. (2013). An Interaction Model for Visualizations Beyond The Desktop. Visualization and Computer Graphics, IEEE Transactions on 19, 12, pp. 2396--2405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kyung, K.-U., Lim, J.M., Lim, Y.-A., et al. (2011). TAXEL: Initial progress toward self-morphing visiohaptic interface. IEEE World Haptics, pp. 37--42.Google ScholarGoogle Scholar
  18. Lederman, S.J. and Campbell, J.I. (1982). Tangible graphs for the blind. Human Factors: The Journal of the Human Factors and Ergonomics Society 24, 1, pp. 85-- 100.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lee, B., Isenberg, P., Riche, N.H., and Carpendale, S. (2012). Beyond Mouse and Keyboard: Expanding Design Considerations for Information Visualization Interactions. Visualization and Computer Graphics, IEEE Transactions on 18, 12, pp. 2689--2698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Leithinger, D., Follmer, S., Olwal, A., et al. (2013). Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays. In Proc. CHI, pp. 1441--1450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Leithinger, D. and Ishii, H. (2010). Relief: a scalable actuated shape display. In Proc TEI pp. 221--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Leithinger, D., Lakatos, D., DeVincenzi, A., Blackshaw, M., and Ishii, H. (2011). Direct and gestural interaction with relief: a 2.5 D shape display. Proceedings of the 24th annual ACM symposium on User interface software and technology, pp. 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Manshad, M.S., Pontelli, E., and Manshad, S.J. (2012). Trackable interactive multimodal manipulatives: towards a tangible user environment for the blind. In Proceedings of the 13th international conference on Computers Helping People with Special Needs - Volume Part II, Springer-Verlag, pp. 664--671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Moere, A.V. (2008). Beyond the tyranny of the pixel: Exploring the physicality of information visualization. Information Visualisation, pp. 469--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Paneels, S., & Roberts, J. C. (2010). Review of Designs for Haptic Data Visualization. IEEE Transactions on Haptics, 3(2), pp. 119--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Perkins, C. (2002). Cartography: progress in tactile mapping. Progress in Human Geography 26, 4, pp. 521--530.Google ScholarGoogle ScholarCross RefCross Ref
  27. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. (2004). Lumen: interactive visual and shape display for calm computing. ACM SIGGRAPH Emerging technologies, 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rasmussen, M.K., Pedersen, E.W., Petersen, M.G., and Hornbæk, K. Shape-changing interfaces: a review of the design space and open research questions. In Proc. CHI, pp. 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rohit Ashok Khot, Larissa Hjorth, and Florian "Floyd" Mueller. (2014). Understanding Physical Activity through 3D Printed Material Artifacts. In Proc. CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Roudaut, A., Karnik, A., Löchtefeld, M., and Subramanian, S. (2013). Morphees: Toward High "Shape Resolution" in Self-Actuated Flexible Mobile Devices. In Proc. CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shah, P. and Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Psychology Review 14, 1, 47--69.Google ScholarGoogle ScholarCross RefCross Ref
  32. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Proc. IEEE Symposium on Visual Languages, pp. 336-- 343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Spence, I. (1990). Visual psychophysics of simple graphical elements. Journal of Experimental Psychology: Human Perception and Performance 16, 4, pp. 683--692.Google ScholarGoogle ScholarCross RefCross Ref
  34. Stusak, S., & Aslan, A. (2014). Beyond physical bar charts: an exploration of designing physical visualizations. In CHI'14 EA, pp. 1381--1386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Stusak, S., Tabard, A., Sauka, F., Khot, R., & Butz, A. (2014). Activity Sculptures: Exploring the Impact of Physical Visualizations on Running Activity. IEEE Transactions on Visualization and Computer Graphics, 99, 1.Google ScholarGoogle Scholar
  36. Tversky, B., Morrison, J.B., and Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human-Computer Studies 57, 4, pp. 247--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Tversky, B. (2001). Spatial schemas in depictions. Spatial schemas and abstract thought, pp. 79--111.Google ScholarGoogle Scholar
  38. Wall, S.A. and Brewster, S. (2006). Sensory substitution using tactile pin arrays: Human factors, technology and applications. Signal Processing 86, 12, pp. 3674--3695. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wobbrock, J. O., Morris, M. R., & Wilson, A. D. (2009). User-defined gestures for surface computing. In Proc. CHI, pp. 1083--1092). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zacks, J., Levy, E., Tversky, B., and Schiano, D.J. (1998). Reading bar graphs: Effects of extraneous depth cues and graphical context. Journal of Experimental Psychology Applied 4, pp. 119--138.Google ScholarGoogle ScholarCross RefCross Ref
  41. Zacks, J. and Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory & Cognition 27, 6, pp. 1073--1079.Google ScholarGoogle ScholarCross RefCross Ref
  42. Zhao, J. and Moere, A.V. (2008). Embodiment in data sculpture: a model of the physical visualization of information. Proc. DIMEA, pp. 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Exploring Interactions with Physically Dynamic Bar Charts

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader