skip to main content
research-article

Phasor Imaging: A Generalization of Correlation-Based Time-of-Flight Imaging

Published:03 November 2015Publication History
Skip Abstract Section

Abstract

In correlation-based time-of-flight (C-ToF) imaging systems, light sources with temporally varying intensities illuminate the scene. Due to global illumination, the temporally varying radiance received at the sensor is a combination of light received along multiple paths. Recovering scene properties (e.g., scene depths) from the received radiance requires separating these contributions, which is challenging due to the complexity of global illumination and the additional temporal dimension of the radiance.

We propose phasor imaging, a framework for performing fast inverse light transport analysis using C-ToF sensors. Phasor imaging is based on the idea that, by representing light transport quantities as phasors and light transport events as phasor transformations, light transport analysis can be simplified in the temporal frequency domain. We study the effect of temporal illumination frequencies on light transport and show that, for a broad range of scenes, global radiance (inter-reflections and volumetric scattering) vanishes for frequencies higher than a scene-dependent threshold. We use this observation for developing two novel scene recovery techniques. First, we present micro-ToF imaging, a ToF-based shape recovery technique that is robust to errors due to inter-reflections (multipath interference) and volumetric scattering. Second, we present a technique for separating the direct and global components of radiance. Both techniques require capturing as few as 3--4 images and minimal computations. We demonstrate the validity of the presented techniques via simulations and experiments performed with our hardware prototype.

Skip Supplemental Material Section

Supplemental Material

a156.mp4

mp4

14.8 MB

References

  1. X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun. 2011. High-resolution random-modulation CW lidar. Appl. Optics 50, 22.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Akbulut, C. H. Chen, M. C. Hargis, A. M. Weiner, M. R. Mel-Loch, and J. M. Woodall. 2001. Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes. IEEE Photon. Technol. Lett. 13, 1.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Busck and H. Heiselberg. 2004. High accuracy 3D laser radar. Proc. SPIE 5412.Google ScholarGoogle Scholar
  4. B. Buttgen, M.-A. El Mechat, F. Lustenberger, and P. Seitz. 2007. Pseudonoise optical modulation for real-time 3-d imaging with minimum interference. IEEE Trans. Circ. Syst. 54, 10, 2109--2119.Google ScholarGoogle Scholar
  5. B. Buxbaum, R. Schwarte, T. Ringbeck, M. Grothof, and X. Luan. 2002. Msm-pmd as correlation receiver in a new 3d-ranging system. Proc. SPIE 4546.Google ScholarGoogle Scholar
  6. D. A. Carnegie, J. R. K. McClymont, A. P. P. Jongenelen, B. Drayto, A. A. Dorrington, and A. D. Payne. 2011. Design and construction of a configurable full-field range imaging system for mobile robotic applications. In New Developments and Applications in Sensing Technology. Springer, 133--155.Google ScholarGoogle Scholar
  7. C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang. 1999. Ghz bandwidth gaas light-emitting diodes. Appl. Phys. Lett. 74, 21.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. Chen, H. P. Seidel, and H. Lensch. 2008. Modulated phase-shifting for 3D scanning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08). 1--8.Google ScholarGoogle Scholar
  9. V. Couture, N. Martin, and S. Roy. 2014. Unstructured light scanning robust to indirect illumination and depth discontinuities. Int. J. Comput. Vis. 108, 3, 204--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. A. Dorrington, J. P. Godbaz, M. J. Cree, A. D. Payne, and L. V. Streeter. 2011. Separating true range measurements from multi-path and scattering interference in commercial range cameras. Proc. SPIE 7864.Google ScholarGoogle Scholar
  11. R. Ferriere, J. Cussey, and J. Dudley. 2008. Time-of-flight range detection using low-frequency intensity modulation of a CW laser diode: Application to fiber length measurement. Optical Engin. 47, 9.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. Freedman, E. Krupka, Y. Smolin, I. Leichter, and M. Schmidt. 2014. SRA: Fast removal of general multipath for ToF sensors. In Proceedings of the 13th European Conference on Computer Vision (ECCV'14). 234--249.Google ScholarGoogle Scholar
  13. S. Fuchs. 2010. Multipath interference compensation in time-of-flight camera images. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR'10). 3583--3586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Fuchs, M. Suppa, and O. Hellwich. 2013. Compensation for multipath in Tof camera measurements supported by photometric calibration and environment integration. In Proceedings of the 9th International Conference on Computer Vision Systems (ICVS'13). 31--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Godbaz, M. Cree, and A. Dorrington. 2008. Mixed pixel return separation for a full-field ranger. In Proceedings of the 23rd International Conference on Image and Vision Computing New Zealand (IVCNZ'08). 1--6.Google ScholarGoogle Scholar
  16. J. P. Godbaz, M. J. Cree, and A. A. Dorrington. 2009. Multiple return separation for a full-field ranger via continuous waveform modelling. Proc. SPIE 7251.Google ScholarGoogle Scholar
  17. J. P. Godbaz, M. J. Cree, and A. A. Dorrington. 2012. Closed-form inverses for the mixed pixel/multipath interference problem in AMCW lidar. Proc. SPIE 8296.Google ScholarGoogle Scholar
  18. S. B. Gokturk, H. Yalcin, and C. Bamji. 2004. A time-of-flight depth sensor - System description, issues and solutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'04). 35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Gu, T. Kobayashi, M. Gupta, and S. Nayar. 2011. Multiplexed illumination for scene recovery in the presence of global illumination. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'11). 691--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G. Narasimhan. 2013a. A practical approach to 3d scanning in the presence of interreflections, subsurface scattering and defocus. Int. J. Comput. Vis. 102, 1--3, 33--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Gupta, Q. Yin, and S. K. Nayar. 2013b. Structured light in sunlight. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'13). 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Gupta and S. K. Nayar. 2012. Micro phase shifting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'12). 813--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Gupta, Y. Tian, S. G. Narasimhan, and L. Zhang. 2009. (De)focusing on global light transport for active scene recovery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09). 2969--2976.Google ScholarGoogle Scholar
  24. V. I. Gushov and Y. N. Solodkin. 1991. Automatic processing of fringe patterns in integer interferometers. Optics Lasers Engin. 14, 4--5.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. W. Hasinoff, F. Durand, and W. T. Freeman. 2010. Noise-optimal capture for high dynamic range photography. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 553--560.Google ScholarGoogle Scholar
  26. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich. 2013. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Heinen, W. Huber, and W. Harth. 1976. Light-emitting diodes with a modulation bandwidth of more than 1 Ghz. Electron. Lett. 12, 21.Google ScholarGoogle ScholarCross RefCross Ref
  28. L. G. Henyey and J. L. Greenstein. 1941. Diffuse radiation in the galaxy. Astrophys. J. 93, 70--83.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. Jimenez, D. Pizarro, M. Mazo, and S. Palazuelos. 2012. Modelling and correction of multipath interference in time of flight cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'12). 893--900. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. P. P. Jongenelen, D. G. Bailey, A. D. Payne, A. A. Dorrington, and D. A. Carnegie. 2011. Analysis of errors in tof range imaging with dual-frequency modulation. IEEE Trans. Instrument. Measure. 60, 5.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. P. P. Jongenelen, D. Carnegie, A. D. Payne, and A. A. Dorrington. 2010. Maximizing precision over extended unambiguous range for Tof range imaging systems. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC'10). 1575--1580.Google ScholarGoogle Scholar
  32. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar. 2013. Coded time of flight cameras: Sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph. 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Kirmani, A. Benedetti, and P. Chou. 2013. SPUMIC: Simultaneous phase unwrapping and multipath interference cancellation in time-of-flight cameras using spectral methods. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'13). 1--6.Google ScholarGoogle Scholar
  34. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar. 2009. Looking around the corner using transient imaging. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'09). 159--166.Google ScholarGoogle Scholar
  35. W. Koechner. 1968. Optical ranging system employing a high power injection laser diode. IEEE Trans. Aerospace Electron. Syst. 4, 1.Google ScholarGoogle Scholar
  36. R. Lange. 2000. 3d time-of-flight distance measurement with custom solid-state image sensors in cmos-ccd-technology. PhD thesis. http://d-nb.info/960293825/34.Google ScholarGoogle Scholar
  37. R. Lange and P. Seitz. 2001. Solid state time-of-flight range camera. IEEE J. Quantum Electron. 37, 3.Google ScholarGoogle ScholarCross RefCross Ref
  38. N. Naik, S. Zhao, A. Velten, R. Raskar, and K. Bala. 2011. Single view reflectance capture using multiplexed scattering and time-of-flight imaging. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25, 3, 1003--1012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 3, 935--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. O'Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N.Kutulakos. 2014. Temporal frequency probing for 5D transient analysis of global light transport. ACM Trans. Graph. 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. O'Toole, R. Raskar, and K. N. Kutulakos. 2012. Primal-dual coding to probe light transport. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar. 2011. Estimating motion and size of moving non-line-of-sight objects in cluttered environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'11).265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. D. Payne, A. A. Dorrington, and M. J. Cree. 2010a. Illumination waveform optimization for time-of-flight range imaging cameras. Proc. SPIE 8085.Google ScholarGoogle Scholar
  45. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie. 2010b. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras. Appl. Optics 49, 23.Google ScholarGoogle ScholarCross RefCross Ref
  46. D. Reddy, R. Ramamoorthi, and B. Curless. 2012. Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In Proceedings of the 12th European Conference on Computer Vision (ECCV'12). 596--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. R. Schwarte. 2004. Breakthrough in multi-channel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip. Proc. SPIE 5575.Google ScholarGoogle Scholar
  48. R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte. 1997. New electro-optical mixing and correlating sensor: Facilities and applications of the photonic mixer device. Proc. SPIE 3100.Google ScholarGoogle Scholar
  49. S. M. Seitz, Y. Matsushita, and K. N. Kutulakos. 2005. A theory of inverse light transport. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05). 1440--1447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi. 1997. Frequency-multiplex fourier-transform profilometry: A single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations. Appl. Optics 36, 22.Google ScholarGoogle ScholarCross RefCross Ref
  51. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature 3, 745.Google ScholarGoogle Scholar
  52. A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar. 2013. Femto-photography: Capturing and visualizing the propagation of light. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. G. Walter, C. Wu, H. Then, M. Feng, and N. Holonyak. 2009. Tilted-charge high speed (7 Ghz) light emitting diode. Appl. Phys. Lett. 94, 23.Google ScholarGoogle ScholarCross RefCross Ref
  54. C. H. Wu, G. Walter, H. Then, and M. Feng. 2010. Design and layout of multi Ghz operation of light emitting diodes. In Proceedings of the GaAs MAN-TECH Conference.Google ScholarGoogle Scholar
  55. D. Wu, M. O'Toole, A. Velten, A. Agrawal, and R. Raskar. 2012a. Decomposing global light transport using time of flight imaging. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'12). 366--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. D. Wu, G. Wetzstein, C. Barsi, T. Willwacher, M. O'Toole, N. Naik, Q. Dai, K. Kutulakos, and R. Raskar. 2012b. Frequency analysis of transient light transport with applications in bare sensor imaging. In Proceedings of the 12th European Conference on Computer Vision (ECCV'12).542--555. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Phasor Imaging: A Generalization of Correlation-Based Time-of-Flight Imaging

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 5
        October 2015
        188 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2843519
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 November 2015
        • Accepted: 1 February 2015
        • Revised: 1 December 2014
        • Received: 1 June 2014
        Published in tog Volume 34, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader