skip to main content
10.1145/2739480.2754692acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Evolution Strategies for Exploring Protein Energy Landscapes

Published:11 July 2015Publication History

ABSTRACT

The focus on important diseases of our time has prompted many experimental labs to resolve and deposit functional structures of disease-causing or disease-participating proteins. At this point, many functional structures of wildtype and disease-involved variants of a protein exist in structural databases. The objective for computational approaches is to employ such information to discover features of the underlying energy landscape on which functional structures reside. Important questions about which subset of structures are most thermodynamically-stable remain unanswered. The challenge is how to transform an essentially discrete problem into one where continuous optimization is suitable and effective. In this paper, we present such a transformation, which allows adapting and applying evolution strategies to explore an underlying continuous variable space and locate the global optimum of a multimodal fitness landscape. The paper presents results on wildtype and mutant sequences of proteins implicated in human disorders, such as cancer and Amyotrophic lateral sclerosis. More generally, the paper offers a methodology for transforming a discrete problem into a continuous optimization one as a way to possibly address outstanding discrete problems in the evolutionary computation community.

References

  1. E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen. Lapack: A portable linear algebra library for high-performance computers. In Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing '90, pages 2--11, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Auger and N. Hansen. A restart cma evolution strategy with increasing population size. In IEEE Congress on Evolutionary Computation (CEC), pages 1769--1776. IEEE, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. Becerra, A. Sandoval, D. Restrepo-Montoya, and L. Nino. A parallel multi-objective ab initio approach for protein structure prediction. In Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on, pages 137--141, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. M. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol., 10(12):980--980, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. Bradley, K. M. Misura, and D. Baker. Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742):1868--1871, Sep 2005.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Calvo, J. Ortega, and M. Anguita. Comparison of parallel multi-objective approaches to protein structure prediction. In Journal of Supercomputing, pages 253--260. CITIC UGR Univ Granada, Dept Comp Architecture & Comp Technol, Granada, Spain, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Chira, D. Horvath, and D. Dumitrescu. An Evolutionary Model Based on Hill-Climbing Search Operators for Protein Structure Prediction. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, pages 38--49, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cutello, V, G. Morelli, G. Nicosia, M. Pavone, and G. Scollo. On discrete models and immunological algorithms for protein structure prediction. Natural Computing, 10(1):91--102, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. L. de Groot, D. M. van Aalten, R. M. Scheek, A. Amadei, G. Vriend, and H. J. Berendsen. Prediction of protein conformational freedom from distance constraints. Proteins, 29(2):240--251, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Faccioli, I. N. da Silva, L. O. Bortot, and A. Delbem. A mono-objective evolutionary algorithm for Protein Structure Prediction in structural and energetic contexts. In IEEE Congress on Evolutionary Computation (CEC), pages 1--7. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Fernández-Medarde and E. Santos. Ras in cancer and developmental diseases. Genes Cancer, 2(3):344--358, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  12. C. Gagné, M. Beaulieu, J. NAND Parizeau, and S. Thibault. Human-competitive lens system design with evolution strategies. Applied Soft Computing, 8(4):1439--1452, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Garza-Fabre, G. Toscano-Pulido, and E. Rodriguez-Tello. Locality-based multiobjectivization for the HP model of protein structure prediction. In GECCO '12: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference. ACM Request Permissions, July 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. M. Goldstein, E. E. Fredj, and R. B. R. Gerber. A new hybrid algorithm for finding the lowest minima of potential surfaces: approach and application to peptides. Journal of Computational Chemistry, 32(9):1785--1800, July 2011.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Gront, S. Kmiecik, and A. Kolinski. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. J. Comput. Chem., 28(29):1593--1597, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Handl, J. Knowles, R. Vernon, D. Baker, and S. C. Lovell. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction. 80(2):490--504, 2012.Google ScholarGoogle Scholar
  17. N. Hansen and S. Kern. Evaluating the cma evolution strategy on multimodal test functions. In Intl Conf on Parallel Problem Solving from Nature (PPSN), pages 282--291, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  18. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159--195, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. O. Iba\ nez, L. Ballerini, O. Cordón, S. Damas, and J. Santamaria. An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification. Information Sciences, 179(3):3998--4028, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. K. Islam, M. Chetty, and M. Murshed. Novel Local Improvement Techniques in Clustered Memetic Algorithm for Protein Structure Prediction. In IEEE Congress on Evolutionary Computation (CEC), pages 1003--1011. IEEE, Apr. 2011.Google ScholarGoogle Scholar
  21. D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley, 1973.Google ScholarGoogle Scholar
  22. A. D. McLachlan. A mathematical procedure for superimposing atomic coordinates of proteins. Acta Crystallogr. A., 26(6):656--657, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. Molloy, S. Saleh, and A. Shehu. Probabilistic search and energy guidance for biased decoy sampling in ab-initio protein structure prediction. IEEE/ACM Trans Bioinf and Comp Biol, 10(5):1162--1175, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Olson, K. A. D. Jong, and A. Shehu. Off-lattice protein structure prediction with homologous crossover. In Conf on Genetic and Evolutionary Computation (GECCO), pages 287--294, New York, NY, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Olson and A. Shehu. Multi-objective stochastic search for sampling local minima in the protein energy surface. In ACM Conf on Bioinf and Comp Biol (BCB), pages 430--439, Washington, D. C., September 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Santos, P. Villot, and M. Dieguez. Emergent protein folding modeled with evolved neural cellular automata using the 3d hp model. J of Comp Biol, 21(11):823--845, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Schaub, K. Mauch, and M. Reuss. Metabolic flux analysis in escherichia coli by integrating isotopic dynamic and isotopic stationary 13c labeling data. Biotechnol Bioeng, 99(5):1170--1185, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  28. L. Schrödinger. The PyMOL molecular graphics system, version 1.3r1, August 2010.Google ScholarGoogle Scholar
  29. A. Shehu, C. Clementi, and L. E. Kavraki. Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations. Proteins: Struct. Funct. Bioinf., 65(1):164--179, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  30. A. Shehu and B. Olson. Guiding the search for native-like protein conformations with an ab-initio tree-based exploration. Int. J. Robot. Res., 29(8):1106--1127, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Shmygelska and M. Levitt. Generalized ensemble methods for de novo structure prediction. Proc. Natl. Acad. Sci. USA, 106(5):94305--95126, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  32. A.-A. Tantar, N. Melab, and E.-G. Talbi. A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction. Soft Computing, 12(12):1185--1198, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. A. Wells. Geometric simulation of flexible motion in proteins. Methods Mol Biol, 1084:173--192, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  34. D. Xu and Y. Zhang. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Struct. Funct. Bioinf., 80(7):1715--1735, 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Evolution Strategies for Exploring Protein Energy Landscapes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
        July 2015
        1496 pages
        ISBN:9781450334723
        DOI:10.1145/2739480

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        GECCO '15 Paper Acceptance Rate182of505submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader