skip to main content
research-article

Integrable PolyVector fields

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present a framework for designing curl-free tangent vector fields on discrete surfaces. Such vector fields are gradients of locally-defined scalar functions, and this property is beneficial for creating surface parameterizations, since the gradients of the parameterization coordinate functions are then exactly aligned with the designed fields. We introduce a novel definition for discrete curl between unordered sets of vectors (PolyVectors), and devise a curl-eliminating continuous optimization that is independent of the matchings between them. Our algorithm naturally places the singularities required to satisfy the user-provided alignment constraints, and our fields are the gradients of an inversion-free parameterization by design.

Skip Supplemental Material Section

Supplemental Material

a38.mp4

mp4

18.6 MB

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3, 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Azencot, O., Ben-Chen, M., Chazal, F., and Ovsjanikov, M. 2013. An operator approach to tangent vector field processing. Comput. Graph. Forum 32, 5, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4, 98:1--98:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-mesh generation and processing: A survey. Computer Graphics Forum 32, 6, 51--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. 2010. Polygon Mesh Processing. AK Peters.Google ScholarGoogle Scholar
  7. Campen, M., and Kobbelt, L. 2014. Dual strip weaving: Interactive design of quad layouts using elastica strips. ACM Trans. Graph. 33, 6, 183:1--183:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5.Google ScholarGoogle ScholarCross RefCross Ref
  9. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing N-PolyVector fields with complex polynomials. Computer Graphics Forum 33, 5, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3 (July), 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6, 168:1--168:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ebke, H.-C., Campen, M., Bommes, D., and Kobbelt, L. 2014. Level-of-detail quad meshing. ACM Trans. Graph. 33, 6, 184:1--184:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proc. ACM SIGGRAPH, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kälberer, F., Nieser, M., and Polthier, K. 2007. QuadCover -- surface parameterization using branched coverings. Computer Graphics Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  16. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kuzmin, A., Luisier, M., and Schenk, O. 2013. Fast methods for computing selected elements of the Green's function in massively parallel nanoelectronic device simulations. In Proc. Euro-Par, 533--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3, 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, Y., Bao, F., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Geometry synthesis on surfaces using field-guided shape grammars. IEEE Trans. Vis. Comput. Graph. 17, 2, 231--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ling, R., Huang, J., Jüttler, B., Sun, F., Bao, H., and Wang, W. 2014. Spectral quadrangulation with feature curve alignment and element size control. ACM Trans. Graph. 34, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4, 108:1--108:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., and Wang, G. 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. Pacific Graphics, 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Myles, A., and Zorin, D. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Myles, A., Pietroni, N., and Zorin, D. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. 2012. Fields on symmetric surfaces. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Panozzo, D., Puppo, E., Tarini, M., and Sorkine-Hornung, O. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4, 134:1--134:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Polthier, K., and Preuss, E. 2003. Identifying vector field singularities using a discrete Hodge decomposition. In Visualization and Mathematics III, 113--134.Google ScholarGoogle Scholar
  31. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ray, N., Vallet, B., Alonso, L., and Lévy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1:1--1:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. Computer Graphics Forum 32, 5, 125--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weber, O., and Zorin, D. 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph. 33, 4 (July), 75:1--75:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 4, 118:1--118:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Integrable PolyVector fields

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader