skip to main content
research-article

Seamless surface mappings

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We introduce a method for computing seamless bijective mappings between two surface-meshes that interpolates a given set of correspondences.

A common approach for computing a map between surfaces is to cut the surfaces to disks, flatten them to the plane, and extract the mapping from the flattenings by composing one flattening with the inverse of the other. So far, a significant drawback in this class of techniques is that the choice of cuts introduces a bias in the computation of the map that often causes visible artifacts and wrong correspondences.

In this paper we develop a surface mapping technique that is indifferent to the particular cut choice. This is achieved by a novel type of surface flattenings that encodes this cut-invariance, and when optimized with a suitable energy functional results in a seamless surface-to-surface map.

We show the algorithm enables producing high-quality seamless bijective maps for pairs of surfaces with a wide range of shape variability and from a small number of prescribed correspondences. We also used this framework to produce three-way, consistent and seamless mappings for triplets of surfaces.

Skip Supplemental Material Section

Supplemental Material

a72.mp4

mp4

30 MB

References

  1. Aigerman, N., Poranne, R., and Lipman, Y. 2014. Lifted bijections for low distortion surface mappings. ACM Trans. Graph. 33, 4 (July), 69:1--69:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andersen, E. D., and Andersen, K. D. 1999. The MOSEK interior point optimization for linear programming: an implementation of the homogeneous algorithm. Kluwer Academic Publishers, 197--232.Google ScholarGoogle Scholar
  3. Bogo, F., Romero, J., Loper, M., and Black, M. J. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, Piscataway, NJ, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3 (July), 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-Mesh Generation and Processing: A Survey. Computer Graphics Forum 32, 6, 51--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM Trans. Graph. 27, 3 (Aug.), 99:1--99:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. National Academy of Sciences (PNAS).Google ScholarGoogle Scholar
  8. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Giorgi, D., Biasotti, S., and Paraboschi, L. 2007. SHREC: SHape REtrieval Contest: Watertight models track. http://watertight.ge.imati.cnr.it/.Google ScholarGoogle Scholar
  10. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice video files associated with this course are available from the citation page. In ACM SIGGRAPH 2007 Courses, ACM, New York, NY, USA, SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Huang, Q.-X., and Guibas, L. 2013. Consistent shape maps via semidefinite programming. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '13, 177--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jain, V., Zhang, H., and van Kaick, O. 2007. Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling 13, 1, 101--124.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quadcover - surface parameterization using branched coverings. 375--384.Google ScholarGoogle Scholar
  14. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23, 3 (Aug.), 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lee, A. W. F., Dobkin, D., Sweldens, W., and Schröder, P. 1999. Multiresolution mesh morphing. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '99, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3 (July), 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lin, J. L., Chuang, J. H., Lin, C. C., and Chen, C. C. 2003. Consistent parametrization by quinary subdivision for remeshing and mesh metamorphosis. In Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, ACM, New York, NY, USA, GRAPHITE '03, 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4 (July), 108:1--108:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Löfberg, J. 2004. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference.Google ScholarGoogle ScholarCross RefCross Ref
  21. Mémoli, F., and Sapiro, G. 2005. A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 3, 313--347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Michikawa, T., Kanai, T., Fujita, M., and Chiyokura, H. 2001. Multiresolution interpolation meshes. In Computer Graphics and Applications, 2001. Proceedings. Ninth Pacific Conference on, 60--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (July), 109:1--109:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Myles, A., and Zorin, D. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4 (July), 105:1--105:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. 2011. An optimization approach to improving collections of shape maps. Computer Graphics Forum 30, 5, 1481--1491.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. 2010. One point isometric matching with the heat kernel. In Computer Graphics Forum (Proc. of SGP).Google ScholarGoogle Scholar
  27. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and Guibas, L. 2012. Functional maps: A flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July), 30:1--30:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Panozzo, D., Baran, I., Diamanti, O., and Sorkine-Hornung, O. 2013. Weighted averages on surfaces. ACM Trans. Graph. 32, 4 (July), 60:1--60:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Praun, E., Sweldens, W., and Schröder, P. 2001. Consistent mesh parameterizations. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 179--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (Oct.), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (May), 10:1--10:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graph. 23, 3 (Aug.), 870--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Found. Trends. Comput. Graph. Vis. 2, 2 (Jan.), 105--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Steiner, D., and Fischer, A. 2005. Planar parameterization for closed manifold genus-g meshes using any type of positive weights. Journal of Computing and Information Science in Engineering 5, 2, 118--125.Google ScholarGoogle ScholarCross RefCross Ref
  35. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '06, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tsui, A., Fenton, D., Vuong, P., Hass, J., Koehl, P., Amenta, N., Coeurjolly, D., DeCarli, C., and Carmichael, O. 2013. Globally optimal cortical surface matching with exact landmark correspondence. In Proceedings of the 23rd International Conference on Information Processing in Medical Imaging, Springer-Verlag, Berlin, Heidelberg, IPMI'13, 487--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on shape correspondence. Computer Graphics Forum 30, 6, 1681--1707.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Seamless surface mappings

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader