skip to main content
research-article

Frame field generation through metric customization

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

This paper presents a new technique for frame field generation. As generic frame fields (with arbitrary anisotropy, orientation, and sizing) can be regarded as cross fields in a specific Riemannian metric, we tackle frame field design by first computing a discrete metric on the input surface that is compatible with a sparse or dense set of input constraints. The final frame field is then found by computing an optimal cross field in this customized metric. We propose frame field design constraints on alignment, size, and skewness at arbitrary locations on the mesh as well as along feature curves, offering much improved flexibility over previous approaches. We demonstrate the advantages of our frame field generation through the automatic quadrangulation of man-made and organic shapes with controllable anisotropy, robust handling of narrow surface strips, and precise feature alignment. We also extend our technique to the design of n-vector fields.

Skip Supplemental Material Section

Supplemental Material

a40.mp4

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (July), 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27, 2, 449--458.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3 (July), 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Crane, K., Desbrun, M., and Schrder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5, 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  5. de Goes, F., Liu, B., Budninskiy, M., Tong, Y., and Desbrun, M. 2014. Discrete 2-tensor fields on triangulations. Comput. Graph. Forum 33, 5, 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing n-polyvector fields with complex polynomials. Comput. Graph. Forum 33, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. Qex: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (Nov.), 168:1--168:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jin, M., Wang, Y., Yau, S.-T., and Gu, X. 2004. Optimal global conformal surface parameterization. In IEEE Visualization, 267--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jin, M., Kim, J., and Gu, X. D. 2007. Discrete surface ricci flow: Theory and applications. In Proceedings of the 12th IMA International Conference on Mathematics of Surfaces XII, Springer-Verlag, 209--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (July), 59:1--59:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven RoSy field design and remeshing. IEEE Trans. Vis. Comput. Graph. 16, 1 (Jan.), 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ling, R., Huang, J., Jüttler, B., Sun, F., Bao, H., and Wang, W. 2014. Spectral quadrangulation with feature curve alignment and element size control. ACM Trans. Graph. 34, 1 (Dec.), 11:1--11:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., and Wang, G. 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans. Graph. 30, 6 (Dec.), 140:1--140:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, B., Tong, Y., de Goes, F., and Desbrun, M. 2015. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. (to appear).Google ScholarGoogle Scholar
  16. Moler, C., and Loan, C. V. 2003. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45, 1, 3--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (July), 109:1--09:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Myles, A., and Zorin, D. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4 (July), 105:1--105:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Oprea, J. 2007. Differential Geometry and Its Applications. Mathematical Association of America.Google ScholarGoogle Scholar
  20. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Panozzo, D., Puppo, E., Tarini, M., and Sorkine-Hornung, O. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4 (July), 134:1--134:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (May), 10:1--10:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (Dec.), 1:1--1:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schelter, W., 2015. Maxima -- a computer algebra system (version 5.35). http://maxima.sourceforge.net.Google ScholarGoogle Scholar
  25. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (Aug.), 77:1--77:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Frame field generation through metric customization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader