skip to main content
10.1145/2783258.2783273acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Collaborative Deep Learning for Recommender Systems

Published:10 August 2015Publication History

ABSTRACT

Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recently advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art.

References

  1. D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, pages 19--28, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Baldi and P. J. Sadowski. Understanding dropout. In NIPS, pages 2814--2822, 2013.Google ScholarGoogle Scholar
  3. Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, pages 899--907, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. JMLR, 3:993--1022, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey. Knowledge Based Systems, 46:109--132, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adaptation. In ICML, pages 767--774, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu. Svdfeature: a toolkit for feature-based collaborative filtering. JMLR, 13:3619--3622, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Georgiev and P. Nakov. A non-iid framework for collaborative filtering with restricted boltzmann machines. In ICML, pages 1148--1156, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In ICML, pages 369--376, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.Google ScholarGoogle Scholar
  12. L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommendation via cross-domain triadic factorization. In WWW, pages 595--606, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263--272, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183--233, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling sentences. ACL, pages 655--665, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106--1114, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. Lang. Newsweeder: Learning to filter netnews. In ICML, pages 331--339, 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. W.-J. Li, D.-Y. Yeung, and Z. Zhang. Generalized latent factor models for social network analysis. In IJCAI, pages 1705--1710, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448--472, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111--3119, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. V. D. Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In NIPS, pages 2643--2651, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Purushotham, Y. Liu, and C.-C. J. Kuo. Collaborative topic regression with social matrix factorization for recommendation systems. In ICML, pages 759--766, 2012.Google ScholarGoogle Scholar
  23. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI, pages 452--461, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In ICASSP, pages 6655--6659, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  25. R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, pages 448--455, 2009.Google ScholarGoogle Scholar
  26. R. Salakhutdinov and G. E. Hinton. Semantic hashing. Int. J. Approx. Reasoning, 50(7):969--978, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, pages 1257--1264, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML, pages 791--798, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. G. Sevil, O. Kucuktunc, P. Duygulu, and F. Can. Automatic tag expansion using visual similarity for photo sharing websites. Multimedia Tools Appl., 49(1):81--99, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In KDD, pages 650--658, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. S. Strichartz. A Guide to Distribution Theory and Fourier Transforms. World Scientific, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Tang, R. W. White, and P. Bailey. Recommending interesting activity-related local entities. In SIGIR, pages 1161--1162, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371--3408, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. In NIPS, pages 351--359, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448--456, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Wang, B. Chen, and W.-J. Li. Collaborative topic regression with social regularization for tag recommendation. In IJCAI, pages 2719--2725, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Wang and W. Li. Relational collaborative topic regression for recommender systems. TKDE, 27(5):1343--1355, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. Wang, X. Shi, and D. Yeung. Relational stacked denoising autoencoder for tag recommendation. In AAAI, pages 3052--3058, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. N. Wang and D.-Y. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, pages 809--817, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Wang and Y. Wang. Improving content-based and hybrid music recommendation using deep learning. In ACM MM, pages 627--636, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. W. Zhang, H. Sun, X. Liu, and X. Guo. Temporal qos-aware web service recommendation via non-negative tensor factorization. In WWW, pages 585--596, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. K. Zhou and H. Zha. Learning binary codes for collaborative filtering. In KDD, pages 498--506, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Collaborative Deep Learning for Recommender Systems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
          August 2015
          2378 pages
          ISBN:9781450336642
          DOI:10.1145/2783258

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 10 August 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          KDD '15 Paper Acceptance Rate160of819submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader